To find the distance between the points \( (a, b) \) and \( (-a, -b) \), we can use the distance formula:
\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2},
\]
where \( (x_1, y_1) = (a, b) \) and \( (x_2, y_2) = (-a, -b) \).
Substitute the coordinates into the formula:
\[
d = \sqrt{((-a) - a)^2 + ((-b) - b)^2} = \sqrt{(-2a)^2 + (-2b)^2}.
\]
Simplifying:
\[
d = \sqrt{4a^2 + 4b^2} = \sqrt{4(a^2 + b^2)} = 2\sqrt{a^2 + b^2}.
\]
Conclusion:
The distance between the points \( (a, b) \) and \( (-a, -b) \) is \( 2\sqrt{a^2 + b^2} \).