We are tasked with finding \( \frac{dy}{dx} \). The given function is:
\[
y = x^x + (\cos x)^{\tan x}
\]
1. Step 1: Differentiating \( x^x \)
To differentiate \( x^x \), we take the natural logarithm of both sides:
\[
\ln y = \ln (x^x) = x \ln x
\]
Now, differentiate implicitly with respect to \( x \):
\[
\frac{d}{dx} \ln y = \frac{d}{dx} (x \ln x)
\]
\[
\frac{1}{y} \frac{dy}{dx} = \ln x + 1
\]
Thus:
\[
\frac{dy}{dx} = y (\ln x + 1)
\]
Substitute \( y = x^x \) back:
\[
\frac{dy}{dx} = x^x (\ln x + 1)
\]
2. Step 2: Differentiating \( (\cos x)^{\tan x} \)
Let \( z = (\cos x)^{\tan x} \). We differentiate using logarithmic differentiation:
\[
\ln z = \tan x \ln (\cos x)
\]
Now, differentiate implicitly:
\[
\frac{d}{dx} \ln z = \frac{d}{dx} (\tan x \ln (\cos x))
\]
Apply the product rule:
\[
\frac{1}{z} \frac{dz}{dx} = \sec^2 x \ln (\cos x) + \tan x \cdot \frac{-\sin x}{\cos x}
\]
Thus:
\[
\frac{dz}{dx} = (\cos x)^{\tan x} \left( \sec^2 x \ln (\cos x) - \tan x \cdot \tan x \right)
\]
3. Step 3: Final Expression
Now, the total derivative of \( y \) is:
\[
\frac{dy}{dx} = x^x (\ln x + 1) + (\cos x)^{\tan x} \left( \sec^2 x \ln (\cos x) - \tan^2 x \right)
\]
Final Answer:
\[
\boxed{\frac{dy}{dx} = x^x (\ln x + 1) + (\cos x)^{\tan x} \left( \sec^2 x \ln (\cos x) - \tan^2 x \right)}
\]