We have two terms: $y = (\cos x)^{\tan x} + x^{x}$
---
Part 1: Differentiate $(\cos x)^{\tan x$}
Let $u = (\cos x)^{\tan x}$
\[
\ln u = \tan x \cdot \ln(\cos x)
\]
Differentiate w.r.t $x$:
\[
\frac{1}{u}\frac{du}{dx} = \sec^{2}x \cdot \ln(\cos x) + \tan x \cdot \frac{1}{\cos x}(-\sin x)
\]
\[
\frac{1}{u}\frac{du}{dx} = \sec^{2}x \cdot \ln(\cos x) - \tan^{2}x
\]
So,
\[
\frac{du}{dx} = (\cos x)^{\tan x}\left(\sec^{2}x \cdot \ln(\cos x) - \tan^{2}x\right)
\]
---
Part 2: Differentiate $x^{x$}
Let $v = x^{x}$
\[
\ln v = x\ln x
\]
Differentiate:
\[
\frac{1}{v}\frac{dv}{dx} = \ln x + 1
\]
\[
\frac{dv}{dx} = x^{x}(\ln x + 1)
\]
---
Final derivative:
\[
\frac{dy}{dx} = (\cos x)^{\tan x}\left(\sec^{2}x \cdot \ln(\cos x) - \tan^{2}x\right) + x^{x}(\ln x + 1)
\]
Final Answer:
\[
\boxed{\dfrac{dy}{dx} = (\cos x)^{\tan x}\Big(\sec^{2}x \cdot \ln(\cos x) - \tan^{2}x\Big) + x^{x}(\ln x + 1)}
\]