Step 1: Take the natural logarithm of both sides.
\[
\ln y = \ln(x^x).
\]
Step 2: Use the logarithmic identity \( \ln(a^b) = b \ln a \).
\[
\ln y = x \ln x.
\]
Step 3: Differentiate both sides with respect to \( x \).
Using the product rule on the right-hand side:
\[
\frac{d}{dx} \left( \ln y \right) = \frac{d}{dx} \left( x \ln x \right).
\]
On the left-hand side:
\[
\frac{d}{dx} \left( \ln y \right) = \frac{1}{y} \frac{dy}{dx}.
\]
On the right-hand side, applying the product rule:
\[
\frac{d}{dx} \left( x \ln x \right) = \ln x + 1.
\]
So, we have:
\[
\frac{1}{y} \frac{dy}{dx} = \ln x + 1.
\]
Step 4: Solve for \( \frac{dy}{dx} \).
Multiply both sides by \( y \):
\[
\frac{dy}{dx} = y (\ln x + 1).
\]
Since \( y = x^x \), substitute back:
\[
\frac{dy}{dx} = x^x (\ln x + 1).
\]
Conclusion:
The derivative of \( y = x^x \) is:
\[
\boxed{\frac{dy}{dx} = x^x (\ln x + 1)}.
\]