>
Exams
>
Mathematics
>
Limits and derivations
>
find the derivative of the following functions it
Question:
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers):
x
1
+
t
a
n
x
\frac{x}{1+tan\,x}
1
+
t
an
x
x
CBSE Class XI
Updated On:
Oct 27, 2023
Hide Solution
Verified By Collegedunia
Solution and Explanation
Let f(x)=
x
1
+
t
a
n
x
\frac{x}{1+tan\,x}
1
+
t
an
x
x
f'(x)=(1+tanx)
d
d
x
\frac{d}{dx}
d
x
d
(x)-x
d
d
x
\frac{d}{dx}
d
x
d
(
1
+
t
a
n
x
)
(
1
+
t
a
n
x
)
2
\frac{(1+tan\,x)}{(1+tan\,x)^2}
(
1
+
t
an
x
)
2
(
1
+
t
an
x
)
f'(x)=(1+tanx) -x.
d
d
x
\frac{d}{dx}
d
x
d
(
1
+
t
a
n
x
)
(
1
+
t
a
n
x
)
2
\frac{(1+tan\,x)}{(1+tan\,x)^2}
(
1
+
t
an
x
)
2
(
1
+
t
an
x
)
..(i)
Let g(x)=1+tan x. Accordingly, g(x+h)=1+tan (x + h).
By first principle
g
′
g'
g
′
(x)=
lim
h
→
0
g
(
x
+
h
)
−
g
(
x
)
h
\lim_{h\rightarrow 0} \frac{g(x+h)-g(x)}{h}
lim
h
→
0
h
g
(
x
+
h
)
−
g
(
x
)
=
lim
h
→
0
\lim_{h\rightarrow 0}
lim
h
→
0
[
1
+
t
a
n
(
x
+
h
)
−
1
−
t
a
n
x
h
\frac{1+tan(x+h)-1-tan\,x}{h}
h
1
+
t
an
(
x
+
h
)
−
1
−
t
an
x
]
=
lim
h
→
0
\lim_{h\rightarrow 0}
lim
h
→
0
1
h
\frac{1}{h}
h
1
[
s
i
n
(
x
+
h
)
c
o
s
(
x
+
h
)
−
s
i
n
x
c
o
s
x
\frac{sin(x+h)}{cos(x+h)}-\frac{sin\,x}{cos\,x}
cos
(
x
+
h
)
s
in
(
x
+
h
)
−
cos
x
s
in
x
]
=
lim
h
→
0
\lim_{h\rightarrow 0}
lim
h
→
0
1
h
\frac{1}{h}
h
1
[
s
i
n
(
x
+
h
)
c
o
s
x
−
s
i
n
x
c
o
s
(
x
+
h
)
c
o
s
(
x
+
h
)
c
o
s
x
\frac{sin(x+h)cos\,x-sin\,xcos(x+h)}{cos(x+h)cos\,x}
cos
(
x
+
h
)
cos
x
s
in
(
x
+
h
)
cos
x
−
s
in
x
cos
(
x
+
h
)
]
=
lim
h
→
0
\lim_{h\rightarrow 0}
lim
h
→
0
1
h
\frac{1}{h}
h
1
[
s
i
n
(
x
+
h
−
x
)
c
o
s
(
x
+
h
)
c
o
s
x
\frac{sin(x+h-x)}{cos(x+h)cos\,x}
cos
(
x
+
h
)
cos
x
s
in
(
x
+
h
−
x
)
]
=
lim
h
→
0
\lim_{h\rightarrow 0}
lim
h
→
0
1
h
\frac{1}{h}
h
1
[
s
i
n
h
c
o
s
(
x
+
h
)
c
o
s
x
\frac{sin\,h}{cos(x+h)cos\,x}
cos
(
x
+
h
)
cos
x
s
in
h
]
=(
lim
h
→
0
\lim_{h\rightarrow 0}
lim
h
→
0
s
i
n
h
h
\frac{sin\,h}{h}
h
s
in
h
).(
lim
h
→
0
\lim_{h\rightarrow 0}
lim
h
→
0
1
c
o
s
(
x
+
h
)
c
o
s
x
\frac{1}{cos(x+h)cos\,x}
cos
(
x
+
h
)
cos
x
1
=1x
1
c
o
s
2
x
\frac{1}{cos^2x}
co
s
2
x
1
= sec
2
x
⇒
\Rightarrow
⇒
(1+tanx) = sec
2
x ...(ii)
From (i) and (ii), we obtain
f
′
f'
f
′
(x)=
1
+
t
a
n
x
−
x
s
e
c
2
x
(
1
+
t
a
n
x
)
2
\frac{1+tan\,x-xsec^2x}{(1+tan\,x)^2}
(
1
+
t
an
x
)
2
1
+
t
an
x
−
x
se
c
2
x
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Limits and derivations
The value of
lim
𝑥
→
3
(
𝑥
2
−
9
)
(
𝑥
2
−
4
𝑥
+
3
)
\lim_{𝑥→3}\frac{(𝑥^2 −9)}{(𝑥^2−4𝑥+3 )}
lim
x
→
3
(
x
2
−
4
x
+
3
)
(
x
2
−
9
)
is (rounded off to the nearest integer).
IIT JAM BT - 2024
Mathematics
Limits and derivations
View Solution
The function f(z) defined by
f
(
z
)
=
{
R
e
(
z
)
z
z
≠
0
0
z
=
0
f(z)= \begin{cases} \frac{Re(z)}{z} & z\neq0\\ 0 & z=0 \end{cases}
f
(
z
)
=
{
z
R
e
(
z
)
0
z
=
0
z
=
0
then which one of the following is true?
CUET (PG) - 2023
Mathematics
Limits and derivations
View Solution
Which one of the following is not correct?
CUET (PG) - 2023
Mathematics
Limits and derivations
View Solution
Match List-I and List-II
LIST I
LIST II
A.
lim
x
→
0
(
1
+
s
i
n
x
)
2
cot
x
\lim\limits_{x\rightarrow0}(1+sinx)^{2\cot x}
x
→
0
lim
(
1
+
s
in
x
)
2
c
o
t
x
I.
e
-1/6
B.
lim
x
→
0
e
x
−
(
1
+
x
)
/
x
2
\lim\limits_{x\rightarrow0}e^x-(1+x)/x^2
x
→
0
lim
e
x
−
(
1
+
x
)
/
x
2
II.
e
C.
lim
x
→
0
(
s
i
n
x
x
)
1
/
x
2
\lim\limits_{x\rightarrow0}(\frac{sinx}{x})^{1/x^2}
x
→
0
lim
(
x
s
in
x
)
1/
x
2
III.
e
2
D.
lim
x
→
∞
(
x
+
2
x
+
1
)
x
+
3
\lim\limits_{x\rightarrow\infty}(\frac{x+2}{x+1})^{x+3}
x
→
∞
lim
(
x
+
1
x
+
2
)
x
+
3
IV.
½
Choose the correct answer from the options given below:
CUET (PG) - 2023
Mathematics
Limits and derivations
View Solution
Given below are two statements:
Statement I: The sum of the series 2{7
-1
+3
-1
7
-3
+5
-1
.7
-5
+....} is log
e
(
4
3
\frac{4}{3}
3
4
).
Statement II: The value of e always lies between 2 and 3.
In the light of the above Statements, choose the most appropriate answer from the options given below :
CUET (PG) - 2023
Mathematics
Limits and derivations
View Solution
View More Questions
Questions Asked in CBSE Class XI exam
Consider the reactions:
H
3
PO
2
(aq) + 4 AgNO
3
(aq) + 2 H
2
O
(l)
→
\rightarrow
→
H
3
PO
4
(aq) + 4Ag
(s)
+ 4HNO
3
(aq)
H
3
PO
2
(aq) + 2CuSO
4
(aq) + 2 H
2
O
(l)
→
\rightarrow
→
H
3
PO
4
(aq) + 2Cu
(s)
+ H
2
SO
4(aq)
C
6
H
5
CHO
(l)
+ 2[Ag (NH
3
)
2
]
+
(aq)
+ 3OH
-
(aq)
→
\rightarrow
→
C
6
H
5
COO
-
(aq)
+ 2Ag
(s)
+ 4NH
3
(aq) + 2 H
2
O
(l)
C
6
H
5
CHO
(l)
+ 2Cu
2+
(aq)
+ 5OH
-
(aq)
→
\rightarrow
→
No change observed.
What inference do you draw about the behaviour of Ag
+
and Cu
2+
from these reactions?
CBSE Class XI
Redox Reactions In Terms Of Electron Transfer Reactions
View Solution
Find
(
x
+
1
)
6
−
(
x
−
1
)
6
(x + 1)^6 - (x - 1)^6
(
x
+
1
)
6
−
(
x
−
1
)
6
. Hence or otherwise evaluate
(
2
+
1
)
6
+
(
2
−
1
)
6
.
(\sqrt2 + 1)^6 + (\sqrt2 - 1)^6.
(
2
+
1
)
6
+
(
2
−
1
)
6
.
CBSE Class XI
Binomial Theorem for Positive Integral Indices
View Solution
If U = {a, b, c, d, e, f, g, h}, find the complements of the following sets:
(i) A = {a, b, c}
(ii) B = {d, e, f, g}
(iii) C = {a, c, e, g}
(iv) D = {f, g, h, a}
CBSE Class XI
Complement of a Set
View Solution
Consider the following species: N
3-
, O
2-
, F
-
, Na
+
, Mg
2+
and Al
3+
What is common in them?
Arrange them in the order of increasing ionic radii.
CBSE Class XI
Modern Periodic Law And The Present Form Of The Periodic Table
View Solution
Find and write down structures of 10 interesting small molecular weight biomolecules. Find if there is any industry which manufactures the compounds by isolation. Find out who are the buyers.
CBSE Class XI
How To Analyse Chemical Composition?
View Solution
View More Questions