Question:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): x1+tanx\frac{x}{1+tan\,x}

Updated On: Oct 27, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Let f(x)=x1+tanx\frac{x}{1+tan\,x}
f'(x)=(1+tanx)ddx\frac{d}{dx}(x)-xddx\frac{d}{dx}(1+tanx)(1+tanx)2\frac{(1+tan\,x)}{(1+tan\,x)^2}
f'(x)=(1+tanx) -x.ddx\frac{d}{dx}(1+tanx)(1+tanx)2\frac{(1+tan\,x)}{(1+tan\,x)^2} ..(i)
Let g(x)=1+tan x. Accordingly, g(x+h)=1+tan (x + h).
By first principle
gg'(x)=limh0g(x+h)g(x)h\lim_{h\rightarrow 0} \frac{g(x+h)-g(x)}{h}
=limh0\lim_{h\rightarrow 0} [1+tan(x+h)1tanxh\frac{1+tan(x+h)-1-tan\,x}{h}]
=limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[sin(x+h)cos(x+h)sinxcosx\frac{sin(x+h)}{cos(x+h)}-\frac{sin\,x}{cos\,x}]
=limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[sin(x+h)cosxsinxcos(x+h)cos(x+h)cosx\frac{sin(x+h)cos\,x-sin\,xcos(x+h)}{cos(x+h)cos\,x}]
=limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[sin(x+hx)cos(x+h)cosx\frac{sin(x+h-x)}{cos(x+h)cos\,x}]
=limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[sinhcos(x+h)cosx\frac{sin\,h}{cos(x+h)cos\,x}]
=(limh0\lim_{h\rightarrow 0} sinhh\frac{sin\,h}{h}).(limh0\lim_{h\rightarrow 0}1cos(x+h)cosx\frac{1}{cos(x+h)cos\,x}
=1x1cos2x\frac{1}{cos^2x} = sec2x
\Rightarrow(1+tanx) = sec2x ...(ii)
From (i) and (ii), we obtain
ff'(x)=1+tanxxsec2x(1+tanx)2\frac{1+tan\,x-xsec^2x}{(1+tan\,x)^2}
Was this answer helpful?
0
0

Top Questions on Limits and derivations

View More Questions

Questions Asked in CBSE Class XI exam

View More Questions