Let f(x) = (ax +b)n (cx + d)m.
By Leibnitz product rule,
f'(x) = (ax+b)n\(\frac{d}{dx}\) (cx + d)m + (cx +d)m \(\frac{d}{dx}\)(ax+b)n …...(1)
Now, let f1(x) = (cx+d)m
f1(x+h) = (cx+ch+d)m
f'(x) = \(\lim_{h\rightarrow 0}\) \(\frac{f(x+h)-f(x)}{h}\)
= \(\lim_{h\rightarrow 0}\) \(\frac{(cx+ch+d)^m-(cx+dx)^m}{h}\)
=(cx+dx)m \(\lim_{h\rightarrow 0}\) \(\frac{1}{h}\)[(1+ \(\frac{ch}{cx+1}\))m -1]
=(cx+dx)m\(\lim_{h\rightarrow 0}\) \(\frac{1}{h}\)[(\(1+\frac{mch}{(cx+d)}\) + \(\frac{m(m+1)}{2}\) \(\frac{c^2h^2}{2(cx+d)^2}\) + ...) -1]
=(cx+dx)m\(\lim_{h\rightarrow 0}\) \(\frac{1}{h}\)[\(1+\frac{mch}{(cx+d)}\) + m(m-1)\(\frac{c^2h^2}{2(cx+d)^2}\) + ....(Terms containing higher degrees of h)]
=(cx+dx)m \(\lim_{h\rightarrow 0}\) \(\frac{1}{h}\)[\(\frac{mc}{(cx+d)}\) + \(\frac{m(m-1)c^2h^2}{2(cx+d)^2}\) + ...]
=(cx+dx)m [\(\frac{mc}{(cx+d)}\)+0]
= mc(cx+d)\(\frac{m}{(cx+d)}\)
= mc(cx+d)m-1 ....(2)
Similarly, \(\frac{d}{dx}\)(ax+b)n = na (ax+b) n-1 .....(3)
Therefore, From (1), (2), and (3), we obtain
f'(x) = (ax+b)n {mc (cx+d) m-1} + (cx+d)m {na(ax+b) n-1}
= (ax+b)n-1 (cx+d)m-1[mc(ax+b) + na(cx+d)]