Step 1: Identify given values.
\[
R_1 = 10 \, \Omega, \quad R_2 = 20 \, \Omega, \quad R_3 = 10 \, \Omega.
\]
Two batteries: $30 \, \text{V}$ (with $R_1$), $10 \, \text{V}$ (with $R_3$).
Step 2: Apply Kirchhoff’s current law (KCL).
At the common junction:
\[
I_1 = I_2 + I_3.
\]
Step 3: Apply Kirchhoff’s voltage law (KVL).
Loop 1 (with $R_1$ and $R_2$):
\[
30 - 10I_1 - 20I_2 = 0.
\]
\[
10I_1 + 20I_2 = 30. \quad (1)
\]
Loop 2 (with $R_2$ and $R_3$):
\[
10 - 10I_3 - 20I_2 = 0.
\]
\[
10I_3 + 20I_2 = 10. \quad (2)
\]
Step 4: Use current relation.
$I_1 = I_2 + I_3$. Substituting into (1):
\[
10(I_2 + I_3) + 20I_2 = 30.
\]
\[
10I_2 + 10I_3 + 20I_2 = 30.
\]
\[
30I_2 + 10I_3 = 30. \quad (3)
\]
Step 5: Solve equations (2) and (3).
From (2):
\[
10I_3 + 20I_2 = 10.
\]
From (3):
\[
30I_2 + 10I_3 = 30.
\]
Subtract equations:
\[
(30I_2 + 10I_3) - (20I_2 + 10I_3) = 30 - 10.
\]
\[
10I_2 = 20 \quad \Rightarrow \quad I_2 = 2 \, \text{A}.
\]
Substitute in (2):
\[
10I_3 + 20(2) = 10.
\]
\[
10I_3 + 40 = 10 \quad \Rightarrow \quad I_3 = -3 \, \text{A}.
\]
Negative sign means actual direction is opposite to assumed.
So,
\[
I_1 = I_2 + I_3 = 2 + (-3) = -1 \, \text{A}.
\]
Thus,
\[
I_1 = -1 \, \text{A}, \quad I_2 = 2 \, \text{A}, \quad I_3 = -3 \, \text{A}.
\]
Step 6: Final Answer.
Hence, actual directions of $I_1$ and $I_3$ are opposite to assumed.
Magnitudes:
\[
I_1 = 1 \, \text{A}, \quad I_2 = 2 \, \text{A}, \quad I_3 = 3 \, \text{A}.
\]
---