Find the coordinates of the points which divide the line segment joining A(– 2, 2) and B(2, 8) into four equal parts.
From the figure it is observed that points P,Q,R are dividing the line segment in a ratio 1:3,1:1,3:1 respectively,
Coordinates of P=\((\frac{1\times2+3\times(-2)}{1+3},\frac{1\times8+3\times2}{1+3})\)=\((-1,\frac{7}{2})\)
Coordinates of Q= \((\frac{2+(-2)}{2},\frac{2+8}{3+1})=(0,5)\)
Coordinates of R= \((\frac{3\times2+1\times(-2)}{1+3},\frac{3\times8+1\times2}{3+1})=(1,\frac{13}{2})\)
Let \( F \) and \( F' \) be the foci of the ellipse \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) (where \( b<2 \)), and let \( B \) be one end of the minor axis. If the area of the triangle \( FBF' \) is \( \sqrt{3} \) sq. units, then the eccentricity of the ellipse is:
A common tangent to the circle \( x^2 + y^2 = 9 \) and the parabola \( y^2 = 8x \) is
If the equation of the circle passing through the points of intersection of the circles \[ x^2 - 2x + y^2 - 4y - 4 = 0, \quad x^2 + y^2 + 4y - 4 = 0 \] and the point \( (3,3) \) is given by \[ x^2 + y^2 + \alpha x + \beta y + \gamma = 0, \] then \( 3(\alpha + \beta + \gamma) \) is:
If the circles \( x^2 + y^2 - 8x - 8y + 28 = 0 \) and \( x^2 + y^2 - 8x - 6y + 25 - a^2 = 0 \) have only one common tangent, then \( a \) is:
Let \( a \) be an integer multiple of 8. If \( S \) is the set of all possible values of \( a \) such that the line \( 6x + 8y + a = 0 \) intersects the circle \( x^2 + y^2 - 4x - 6y + 9 = 0 \) at two distinct points, then the number of elements in \( S \) is:
Assertion (A): The sum of the first fifteen terms of the AP $ 21, 18, 15, 12, \dots $ is zero.
Reason (R): The sum of the first $ n $ terms of an AP with first term $ a $ and common difference $ d $ is given by: $ S_n = \frac{n}{2} \left[ a + (n - 1) d \right]. $
Assertion (A): The sum of the first fifteen terms of the AP $21, 18, 15, 12, \dots$ is zero.
Reason (R): The sum of the first $n$ terms of an AP with first term $a$ and common difference $d$ is given by: $S_n = \frac{n}{2} \left[ a + (n - 1) d \right].$