Start with the first inequality:
\[
|x - 3|<2 \Rightarrow -2<x - 3<2 \Rightarrow 1<x<5
\]
Now the second inequality:
\[
||x| - 2|<3
\]
Let \( y = |x| \), so:
\[
|y - 2|<3 \Rightarrow -3<y - 2<3 \Rightarrow -1<y<5 \Rightarrow |x|<5
\]
Also \( y = |x|>-1 \) is always true. So:
\[
-5<x<5
\]
Now intersect both conditions:
From first: \( x \in (1, 5) \)
From second: \( x \in (-5, 5) \) excluding region where \( |x| - 2| \ge 3 \) → this is excluded when \( |x| \in (0,1) \cup (5,\infty) \)
So intersecting:
\[
x \in (-5, -1) \cup (1, 5)
\Rightarrow \boxed{(-5, -1) \cup (1, 5)}
\]