The points divide the line segment into three equal parts, so the ratio of division is \(1 : 2\) for the first point and \(2 : 1\) for the second point.
For the first point, using the section formula, the coordinates dividing the segment \((-2, 2)\) and \((7, -4)\) in the ratio \(1 : 2\) are:
\[ x = \frac{1 \times 7 + 2 \times (-2)}{1 + 2} = \frac{7 - 4}{3} = 1, \quad y = \frac{1 \times (-4) + 2 \times 2}{1 + 2} = \frac{-4 + 4}{3} = 0 \]
For the second point, dividing the segment in the ratio \(2 : 1\), we get:
\[ x = \frac{2 \times 7 + 1 \times (-2)}{2 + 1} = \frac{14 - 2}{3} = 4, \quad y = \frac{2 \times (-4) + 1 \times 2}{2 + 1} = \frac{-8 + 2}{3} = -2 \]
So, the coordinates of the trisection points are:
\((1, 0) \quad \text{and} \quad (4, -2)\)