We are given the equation \( 2x^2 + 2y^2 + 3x + 4y + 9 = 0 \). To find the center and radius, we need to rewrite this in the standard form of a circle equation \( (x - h)^2 + (y - k)^2 = r^2 \).
Step 1: Divide through by 2
\[
x^2 + y^2 + \frac{3}{2}x + 2y + \frac{9}{2} = 0
\]
Step 2: Complete the square
For \( x \)-terms:
\[
x^2 + \frac{3}{2}x \quad \Rightarrow \quad \left( x + \frac{3}{4} \right)^2 - \frac{9}{16}
\]
For \( y \)-terms:
\[
y^2 + 2y \quad \Rightarrow \quad (y + 1)^2 - 1
\]
Step 3: Substitute back and simplify
Substituting into the equation:
\[
\left( x + \frac{3}{4} \right)^2 - \frac{9}{16} + (y + 1)^2 - 1 + \frac{9}{2} = 0
\]
Simplifying:
\[
\left( x + \frac{3}{4} \right)^2 + (y + 1)^2 = 2
\]
Thus, the center is \( \left( -\frac{3}{4}, -2 \right) \) and the radius is \( 2 \).