Let the third side of the triangle be x.
Perimeter of the given triangle = 42 cm
18 cm + 10 cm + x = 42 x
= 14 cm
Perimeter
s =\( \frac{\text{(a + b + c)}}{2}\)
\(= \frac{42}{2} \)
= 21 cm
By Heron’s formula,
Area of a triangle \( = \sqrt{\text{s(s - a)(s - b)(s - c)}}\)
\(= \sqrt{\text{21(21 - 18)(21 - 10)(21 - 14)}}\)
\(= \sqrt{\text{21 × 3 × 11 × 7}}\)
\(= 21\sqrt{11}\) cm2
Area of the triangle \(= 21\sqrt{11}\) cm2.
In Fig. 9.26, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠ BEC = 130° and ∠ ECD = 20°. Find ∠ BAC.