Question:

Find the area of a triangle two sides of which are 18cm and 10cm and the perimeter is 42cm.

Updated On: Nov 16, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Let the third side of the triangle be x. 
Perimeter of the given triangle = 42 cm 
18 cm + 10 cm + x = 42 x 
= 14 cm

Perimeter
s =(a + b + c)2 \frac{\text{(a + b + c)}}{2}
=422= \frac{42}{2}
= 21 cm
By Heron’s formula,
Area of a triangle =s(s - a)(s - b)(s - c) = \sqrt{\text{s(s - a)(s - b)(s - c)}}

=21(21 - 18)(21 - 10)(21 - 14)= \sqrt{\text{21(21 - 18)(21 - 10)(21 - 14)}}

=21 × 3 × 11 × 7= \sqrt{\text{21 × 3 × 11 × 7}}

=2111= 21\sqrt{11} cm2

Area of the triangle =2111= 21\sqrt{11} cm2.

Was this answer helpful?
0
0

Top Questions on Area of a Triangle - by Heron’s Formula

View More Questions