Question:

Find the angle between the lines \( \vec{r} = 3\hat{i} + 8\hat{j} + 3\hat{k} + \mu(\hat{i} + 2\hat{j} - \hat{k}) \) and \( \vec{r} = -3\hat{i} + 9\hat{j} - \hat{k} + \lambda(5\hat{i} + 3\hat{j} + 4\hat{k}) \).

Show Hint

Angle calculation only requires the direction vectors (terms following \( \mu \) and \( \lambda \)). The constant vectors represent points on the lines and do not influence the angle.
Updated On: Jan 22, 2026
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Understanding the Concept:
The angle \( \theta \) between two lines is defined by the angle between their direction vectors \( \vec{b}_1 \) and \( \vec{b}_2 \).
Step 2: Key Formula or Approach:
\[ \cos \theta = \frac{|\vec{b}_1 \cdot \vec{b}_2|}{|\vec{b}_1||\vec{b}_2|} \] Step 3: Detailed Explanation:
Direction vectors:
\( \vec{b}_1 = \hat{i} + 2\hat{j} - \hat{k} \).
\( \vec{b}_2 = 5\hat{i} + 3\hat{j} + 4\hat{k} \).
Calculate dot product: \( \vec{b}_1 \cdot \vec{b}_2 = (1)(5) + (2)(3) + (-1)(4) = 5 + 6 - 4 = 7 \).
Calculate magnitudes:
\( |\vec{b}_1| = \sqrt{1^2 + 2^2 + (-1)^2} = \sqrt{6} \).
\( |\vec{b}_2| = \sqrt{5^2 + 3^2 + 4^2} = \sqrt{25 + 9 + 16} = \sqrt{50} = 5\sqrt{2} \).
Then:
\[ \cos \theta = \frac{7}{\sqrt{6} \cdot 5\sqrt{2}} = \frac{7}{5\sqrt{12}} = \frac{7}{5 \cdot 2\sqrt{3}} = \frac{7}{10\sqrt{3}} \].
Step 4: Final Answer:
The angle is \( \theta = \cos^{-1}\left(\frac{7}{10\sqrt{3}}\right) \).
Was this answer helpful?
0
0

Top Questions on Three Dimensional Geometry

View More Questions