(i) Radius of the ball, r = \(\frac{28}{2}\) cm = 14cm
volume of the ball = \(\frac{4}{3}\pi r^3\)
= \(\frac{4}{3} ×\frac{ 22}{7}\) \(× 14\) cm \(× 14\) cm \(× 14\) cm
\(= \frac{34496}{3}\) cm3
= 11498.66 cm3
(ii) Radius of the ball, r =\(\frac{0.21}{2}\) m = 0.105 m
volume of a ball = \(\frac{4}{3}\pi r^3\)
= \(\frac{4}{3} ×\frac{ 22}{7}\) \(× 0.105\) m \(× 0.105\) m \(× 0.105\) m
= 0.004851 m3
List-I | List-II | ||
(A) | Volume of cone | (I) | \(\frac{1}{3}\pi h(r_1^2+r_2^2+r_1r_2)\) |
(B) | Volume of sphere | (II) | \(\frac{1}{3}\pi r^2h\) |
(C) | Volume of Frustum | (III) | \(\pi r^2h\) |
(D) | Volume of cylinder | (IV) | \(\frac{4}{3}\pi r^3\) |
In Fig. 9.26, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠ BEC = 130° and ∠ ECD = 20°. Find ∠ BAC.