Step 1: Find the derivative of \( f(x) \)
The given function is \( f(x) = \frac{x}{2} + \frac{2}{x} \). Differentiate: \[ f'(x) = \frac{1}{2} - \frac{2}{x^2}. \] Step 2: Find critical points
Set \( f'(x) = 0 \): \[ \frac{1}{2} - \frac{2}{x^2} = 0 \implies \frac{2}{x^2} = \frac{1}{2} \implies x^2 = 4 \implies x = 2. \] Step 3: Evaluate \( f(x) \) at critical points and endpoints
At \( x = 1 \): \[ f(1) = \frac{1}{2} + \frac{2}{1} = \frac{1}{2} + 2 = \frac{5}{2}. \] At \( x = 2 \): \[ f(2) = \frac{2}{2} + \frac{2}{2} = 1 + 1 = 2. \]
Step 4: Conclude the result
The absolute maximum value is \( \frac{5}{2} \) at \( x = 1 \), and the absolute minimum value is \( 2 \) at \( x = 2 \).
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: