Let the first term of the A.P. be \( a \), and the common difference be \( d \).
The nth term of an A.P. is given by:
\[ a_n = a + (n - 1)d \]
That is,
\[ a_7 = a_5 + 12 \Rightarrow a + 6d = a + 4d + 12 \Rightarrow 6d = 4d + 12 \Rightarrow 2d = 12 \Rightarrow d = 6 \]
\[ a + 2(6) = 16 \Rightarrow a + 12 = 16 \Rightarrow a = 4 \]
So, the first term is \( a = 4 \) and the common difference is \( d = 6 \).
\[ 4,\ 10,\ 16,\ 22,\ \ldots \]
The formula for the sum of the first \( n \) terms is:
\[ S_n = \frac{n}{2}[2a + (n - 1)d] \]
Substitute values:
\[ S_{29} = \frac{29}{2}[2(4) + (29 - 1)(6)] = \frac{29}{2}[8 + 168] = \frac{29}{2}[176] = 29 \times 88 \]
\[ 29 \times 88 = 2552 \Rightarrow \boxed{S_{29} = 2552} \]
The arithmetic progression is \( 4, 10, 16, \ldots \), and the sum of the first 29 terms is 2552.
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।