Question:

Find: \(\sum_{k=1}^{2007} \sqrt{1 + \frac{1}{k^2} + \frac{1}{(k+1)^2}}\)

Show Hint

Look for telescoping patterns by factoring perfect squares inside roots.
Updated On: Jul 30, 2025
  • \(2008 - \frac{1}{2008}\)
  • \(2007 - \frac{1}{2007}\)
  • \(2007 - \frac{1}{2008}\)
  • \(2008 - \frac{1}{2007}\)
  • \(2008 - \frac{1}{2009}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Inside root: \[ 1 + \frac{1}{k^2} + \frac{1}{(k+1)^2} = \frac{k^2(k+1)^2 + (k+1)^2 + k^2}{k^2(k+1)^2} = \frac{(k^2+k+1)^2}{k^2(k+1)^2} \] Root simplifies to: \(\frac{k^2 + k + 1}{k(k+1)} = 1 + \frac{1}{k} - \frac{1}{k+1}\). Sum telescopes to \(2008 - \frac{1}{2008}\).
Was this answer helpful?
0
0