The equation of the given curve is \(\frac{x^2}{9}+\frac{y^2}{16}\)=1.
On differentiating both sides with respect to x, we have:
\(\frac{2x}{9}+\frac{2y}{16}\).\(\frac{dy}{dx}\)=0
=\(\frac{dy}{dx}\)=\(\frac{-16x}{9y}\)
(i) The tangent is parallel to the x-axis if the slope of the tangent is i.e., 0 \(\frac{-16x}{9y}\)=0,
which is possible if x = 0.
Then,\(\frac{x^2}{9}+\frac{y^2}{16}\)=1 for x=0
y2=16 ⇒ y±4
Hence, the points at which the tangents are parallel to the x-axis are (0, 4) and (0, − 4).
(ii) The tangent is parallel to the y-axis if the slope of the normal is 0, which
gives \(\frac{-1}{(\frac{-16x}{9y})}\)=\(\frac{9y}{16x}\)=0
⇒ y=0.
Then, \(\frac{x^2}{9}+\frac{y^2}{16}\) =1 for y=0.
x=±3.
Hence, the points at which the tangents are parallel to the y-axis are (3, 0) and (− 3, 0).
From the following information, calculate Opening Trade Receivables and Closing Trade Receivables :
Trade Receivables Turnover Ratio - 4 times
Closing Trade Receivables were Rs 20,000 more than that in the beginning.
Cost of Revenue from operations - Rs 6,40,000.
Cash Revenue from operations \( \frac{1}{3} \)rd of Credit Revenue from operations
Gross Profit Ratio - 20%
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
m×n = -1