The equation of the given curve is \(\frac{x^2}{9}+\frac{y^2}{16}\)=1.
On differentiating both sides with respect to x, we have:
\(\frac{2x}{9}+\frac{2y}{16}\).\(\frac{dy}{dx}\)=0
=\(\frac{dy}{dx}\)=\(\frac{-16x}{9y}\)
(i) The tangent is parallel to the x-axis if the slope of the tangent is i.e., 0 \(\frac{-16x}{9y}\)=0,
which is possible if x = 0.
Then,\(\frac{x^2}{9}+\frac{y^2}{16}\)=1 for x=0
y2=16 ⇒ y±4
Hence, the points at which the tangents are parallel to the x-axis are (0, 4) and (0, − 4).
(ii) The tangent is parallel to the y-axis if the slope of the normal is 0, which
gives \(\frac{-1}{(\frac{-16x}{9y})}\)=\(\frac{9y}{16x}\)=0
⇒ y=0.
Then, \(\frac{x^2}{9}+\frac{y^2}{16}\) =1 for y=0.
x=±3.
Hence, the points at which the tangents are parallel to the y-axis are (3, 0) and (− 3, 0).
If \( x = a(0 - \sin \theta) \), \( y = a(1 + \cos \theta) \), find \[ \frac{dy}{dx}. \]
Find the least value of ‘a’ for which the function \( f(x) = x^2 + ax + 1 \) is increasing on the interval \( [1, 2] \).
Three students, Neha, Rani, and Sam go to a market to purchase stationery items. Neha buys 4 pens, 3 notepads, and 2 erasers and pays ₹ 60. Rani buys 2 pens, 4 notepads, and 6 erasers for ₹ 90. Sam pays ₹ 70 for 6 pens, 2 notepads, and 3 erasers.
Based upon the above information, answer the following questions:
(i) Form the equations required to solve the problem of finding the price of each item, and express it in the matrix form \( A \mathbf{X} = B \).
Simar, Tanvi, and Umara were partners in a firm sharing profits and losses in the ratio of 5 : 6 : 9. On 31st March, 2024, their Balance Sheet was as follows:
Liabilities | Amount (₹) | Assets | Amount (₹) |
Capitals: | Fixed Assets | 25,00,000 | |
Simar | 13,00,000 | Stock | 10,00,000 |
Tanvi | 12,00,000 | Debtors | 8,00,000 |
Umara | 14,00,000 | Cash | 7,00,000 |
General Reserve | 7,00,000 | Profit and Loss A/c | 2,00,000 |
Trade Payables | 6,00,000 | ||
Total | 52,00,000 | Total | 52,00,000 |
Umara died on 30th June, 2024. The partnership deed provided for the following on the death of a partner:
A coil of 60 turns and area \( 1.5 \times 10^{-3} \, \text{m}^2 \) carrying a current of 2 A lies in a vertical plane. It experiences a torque of 0.12 Nm when placed in a uniform horizontal magnetic field. The torque acting on the coil changes to 0.05 Nm after the coil is rotated about its diameter by 90°. Find the magnitude of the magnetic field.
The sequence of nitrogenous bases in a segment of a coding strand of DNA is
5' – AATGCTAGGCAC – 3'. Choose the option that shows the correct sequence of nitrogenous bases in the mRNA transcribed by the DNA.
m×n = -1