Capacitor Combination: The given combination of capacitors is shown below:
\[
\text{3 μF} \parallel \text{(4 μF in series with 5 μF)}
\]
1. Step 1: Calculate the Equivalent Capacitance of the 4 μF and 5 μF Capacitors in Series:}
For capacitors in series, the equivalent capacitance \( C_{\text{eq, series}} \) is given by:
\[
\frac{1}{C_{\text{eq, series}}} = \frac{1}{C_1} + \frac{1}{C_2}
\]
Substituting the values:
\[
\frac{1}{C_{\text{eq, series}}} = \frac{1}{4} + \frac{1}{5} = \frac{5 + 4}{20} = \frac{9}{20}
\]
Thus:
\[
C_{\text{eq, series}} = \frac{20}{9} \approx 2.22 \, \mu\text{F}
\]
2. Step 2: Find the Equivalent Capacitance of the Entire Combination:}
Now, the equivalent capacitance of the 3 μF capacitor in parallel with the series combination (2.22 μF) is:
\[
C_{\text{eq, total}} = C_1 + C_{\text{eq, series}} = 3 + 2.22 = 5.22 \, \mu\text{F}
\]
So, the total equivalent capacitance of the combination is 5.22 μF.
3. Step 3: Calculate the Total Energy Stored:}
The energy stored in a capacitor is given by the formula:
\[
E = \frac{1}{2} C V^2
\]
Substituting the values (\( C = 5.22 \, \mu\text{F} \) and \( V = 2 \, \text{V} \)):
\[
E = \frac{1}{2} \times 5.22 \times 10^{-6} \times (2)^2 = \frac{1}{2} \times 5.22 \times 10^{-6} \times 4 = 1.044 \times 10^{-5} \, \text{J} = 10.44 \, \mu\text{J}
\]
Thus, the total energy stored in the combination is 10.44 μJ.