\(I=[\frac{2}{5}Mr^{2}+M(0.2)^{2}]\times 2\)
\(=[\frac{2}{5}\times 2\times (0.1)^{2}+2\times (0.2)^{2}]\times 2\)
\(=[\frac{4}{500}+\frac{8}{100}]\times 2\)
\(=\frac{44\times 2}{500}=\frac{88}{500}(kg-m^{2})\)
So, the correct answer is \(\frac{88}{500} (kg-m^{2})\)
A, B and C are disc, solid sphere and spherical shell respectively with the same radii and masses. These masses are placed as shown in the figure.
The moment of inertia of the given system about PQ is $ \frac{x}{15} I $, where $ I $ is the moment of inertia of the disc about its diameter. The value of $ x $ is:
The total number of structural isomers possible for the substituted benzene derivatives with the molecular formula $C_7H_{12}$ is __
Four capacitors each of capacitance $16\,\mu F$ are connected as shown in the figure. The capacitance between points A and B is __ (in $\mu F$)
Among, Sc, Mn, Co and Cu, identify the element with highest enthalpy of atomisation. The spin only magnetic moment value of that element in its +2 oxidation state is _______BM (in nearest integer).
X g of nitrobenzene on nitration gave 4.2 g of m-dinitrobenzene. X =_____ g. (nearest integer) [Given : molar mass (in g mol\(^{-1}\)) C : 12, H : 1, O : 16, N : 14]
A perfect gas (0.1 mol) having \( \bar{C}_V = 1.50 \) R (independent of temperature) undergoes the above transformation from point 1 to point 4. If each step is reversible, the total work done (w) while going from point 1 to point 4 is ____ J (nearest integer) [Given : R = 0.082 L atm K\(^{-1}\)]
Moment of inertia is defined as the quantity expressed by the body resisting angular acceleration which is the sum of the product of the mass of every particle with its square of a distance from the axis of rotation.
In general form, the moment of inertia can be expressed as,
I = m × r²
Where,
I = Moment of inertia.
m = sum of the product of the mass.
r = distance from the axis of the rotation.
M¹ L² T° is the dimensional formula of the moment of inertia.
The equation for moment of inertia is given by,
I = I = ∑mi ri²
To calculate the moment of inertia, we use two important theorems-