Given integral:
\[
\int x^2 \log(x^2 - 1) \, dx
\]
Using integration by parts:
\[
\int u \, dv = uv - \int v \, du.
\]
Let:
\[
u = \log(x^2 - 1) \quad \text{and} \quad dv = x^2 \, dx.
\]
Then, we have:
\[
du = \frac{2x}{x^2 - 1} \, dx \quad \text{and} \quad v = \frac{x^3}{3}.
\]
Substitute these into the integration by parts formula:
\[
\int x^2 \log(x^2 - 1) \, dx = \frac{x^3}{3} \log(x^2 - 1) - \int \frac{x^3}{3} \cdot \frac{2x}{x^2 - 1} \, dx.
\]
Simplifying the second term:
\[
= \frac{x^3}{3} \log(x^2 - 1) - \frac{2}{3} \int \frac{x^4 - 1}{x^2 - 1} \, dx.
\]
Now, split the integral:
\[
= \frac{x^3}{3} \log(x^2 - 1) - \frac{2}{3} \int \left( x^2 + 1 - \frac{1}{x^2 - 1} \right) \, dx.
\]
Integrating each term:
\[
= \frac{x^3}{3} \log(x^2 - 1) - \frac{2}{3} \left( \int (x^2 + 1) \, dx - \int \frac{1}{x^2 - 1} \, dx \right).
\]
\[
= \frac{x^3}{3} \log(x^2 - 1) - \frac{2}{3} \left( \frac{x^3}{3} + \frac{x}{2} \log |x - 1| + \frac{x}{2} \log |x + 1| \right) + C.
\]
Conclusion: The solution to the integral is:
\[
\frac{x^3}{3} \log(x^2 - 1) - \frac{2}{3} \left( \frac{x^3}{3} + \frac{x}{2} \log |x - 1| + \frac{x}{2} \log |x + 1| \right) + C.
\]