Step 1: Substitute \( \sqrt{x} = t \)
Let \( \sqrt{x} = t \), so \( x = t^2 \) and \( dx = 2t \, dt \). Substituting into the integral: \[ I = \int \frac{t}{(t^2 + 1)(t^2 - 1)} \cdot 2t \, dt = \int \frac{2t^2}{(t^2 + 1)(t^2 - 1)} \, dt. \] Step 2: Simplify the integrand
Rewrite \( \frac{2t^2}{(t^2 + 1)(t^2 - 1)} \) using partial fraction decomposition. We have: \[ \frac{2t^2}{(t^2 + 1)(t^2 - 1)} = \frac{1}{t^2 + 1} + \frac{1}{t^2 - 1}. \] Step 3: Integrate each term
The integral becomes: \[ I = \int \frac{1}{t^2 + 1} \, dt + \int \frac{1}{t^2 - 1} \, dt. \] 1. For \( \int \frac{1}{t^2 + 1} \, dt \), the result is: \[ \int \frac{1}{t^2 + 1} \, dt = \tan^{-1}(t). \] 2. For \( \int \frac{1}{t^2 - 1} \, dt \), rewrite using partial fractions: \[ \frac{1}{t^2 - 1} = \frac{1}{2} \left( \frac{1}{t - 1} - \frac{1}{t + 1} \right). \] Integrating term by term: \[ \int \frac{1}{t^2 - 1} \, dt = \frac{1}{2} \ln|t - 1| - \frac{1}{2} \ln|t + 1| = \frac{1}{2} \ln \left| \frac{t - 1}{t + 1} \right|. \] Step 4: Combine results and back-substitute
Substitute back \( t = \sqrt{x} \): \[ I = \tan^{-1}(\sqrt{x}) + \frac{1}{2} \ln \left| \frac{\sqrt{x} - 1}{\sqrt{x} + 1} \right| + C. \]
Conclusion: The solution to the integral is: \[ I = \tan^{-1}(\sqrt{x}) + \frac{1}{2} \ln \left| \frac{\sqrt{x} - 1}{\sqrt{x} + 1} \right| + C. \]

Comparative Financial Data as on 31st March, 2024 and 2023
| Particulars | 31.03.2024 (₹) | 31.03.2023 (₹) |
|---|---|---|
| Surplus (P&L) | 17,00,000 | 8,00,000 |
| Patents | -- | 50,000 |
| Sundry Debtors | 5,80,000 | 4,20,000 |
| Sundry Creditors | 1,40,000 | 60,000 |
| Cash and Cash Equivalents | 2,00,000 | 90,000 |