Step 1: Substitute \( \sqrt{x} = t \)
Let \( \sqrt{x} = t \), so \( x = t^2 \) and \( dx = 2t \, dt \). Substituting into the integral: \[ I = \int \frac{t}{(t^2 + 1)(t^2 - 1)} \cdot 2t \, dt = \int \frac{2t^2}{(t^2 + 1)(t^2 - 1)} \, dt. \] Step 2: Simplify the integrand
Rewrite \( \frac{2t^2}{(t^2 + 1)(t^2 - 1)} \) using partial fraction decomposition. We have: \[ \frac{2t^2}{(t^2 + 1)(t^2 - 1)} = \frac{1}{t^2 + 1} + \frac{1}{t^2 - 1}. \] Step 3: Integrate each term
The integral becomes: \[ I = \int \frac{1}{t^2 + 1} \, dt + \int \frac{1}{t^2 - 1} \, dt. \] 1. For \( \int \frac{1}{t^2 + 1} \, dt \), the result is: \[ \int \frac{1}{t^2 + 1} \, dt = \tan^{-1}(t). \] 2. For \( \int \frac{1}{t^2 - 1} \, dt \), rewrite using partial fractions: \[ \frac{1}{t^2 - 1} = \frac{1}{2} \left( \frac{1}{t - 1} - \frac{1}{t + 1} \right). \] Integrating term by term: \[ \int \frac{1}{t^2 - 1} \, dt = \frac{1}{2} \ln|t - 1| - \frac{1}{2} \ln|t + 1| = \frac{1}{2} \ln \left| \frac{t - 1}{t + 1} \right|. \] Step 4: Combine results and back-substitute
Substitute back \( t = \sqrt{x} \): \[ I = \tan^{-1}(\sqrt{x}) + \frac{1}{2} \ln \left| \frac{\sqrt{x} - 1}{\sqrt{x} + 1} \right| + C. \]
Conclusion: The solution to the integral is: \[ I = \tan^{-1}(\sqrt{x}) + \frac{1}{2} \ln \left| \frac{\sqrt{x} - 1}{\sqrt{x} + 1} \right| + C. \]
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: