We are asked to find \( \frac{dy}{dx} \) for the given function \( y = (\cos x)^x + \cos^{-1} \sqrt{x} \).
Step 1: Differentiate \( (\cos x)^x \)
Let \( u = (\cos x)^x \). To differentiate this, we first take the natural logarithm of both sides: \[ \ln u = x \ln (\cos x) \] Now, differentiate implicitly with respect to \( x \): \[ \frac{du}{dx} = \frac{d}{dx} \left( x \ln (\cos x) \right) \] Using the product rule: \[ \frac{du}{dx} = \ln (\cos x) + x \frac{d}{dx} \left( \ln (\cos x) \right) \] We know that \( \frac{d}{dx} \left( \ln (\cos x) \right) = -\tan x \), so: \[ \frac{du}{dx} = \ln (\cos x) - x \tan x \] Thus, we have: \[ \frac{du}{dx} = (\cos x)^x \left( -x \tan x + \log(\cos x) \right) \]
Step 2: Differentiate \( \cos^{-1} \sqrt{x} \)
Let \( v = \cos^{-1} \sqrt{x} \). We differentiate this using the chain rule: \[ \frac{dv}{dx} = \frac{d}{dx} \left( \cos^{-1} \sqrt{x} \right) = \frac{-1}{2\sqrt{x} \sqrt{1 - x}} = \frac{-1}{2\sqrt{x - x^2}} \]
Step 3: Combine the results
Since \( y = u + v \), we use the sum rule for differentiation: \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \] Substituting the results from steps 1 and 2: \[ \frac{dy}{dx} = (\cos x)^x \left( -x \tan x + \log(\cos x) \right) + \frac{-1}{2\sqrt{x - x^2}} \] Thus, the derivative is: \[ \frac{dy}{dx} = (\cos x)^x \left( -x \tan x + \log(\cos x) \right) + \frac{-1}{2\sqrt{x - x^2}} \]
The equation of a closed curve in two-dimensional polar coordinates is given by \( r = \frac{2}{\sqrt{\pi}} (1 - \sin \theta) \). The area enclosed by the curve is ___________ (answer in integer).

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?