Find adjoint of each of the matrices \(\begin{bmatrix}1&-1&2\\2&3&5\\-2&0&1\end{bmatrix}\)
Let A=\(\begin{bmatrix}1&-1&2\\2&3&5\\-2&0&1\end{bmatrix}\)
we have
A11=\(\begin{vmatrix}3&5\\0&1\end{vmatrix}\)=3-0=3
A12=-\(\begin{vmatrix}2&5\\-2&1\end{vmatrix}\)=-12
A13=\(\begin{vmatrix}2&3\\-2&0\end{vmatrix}\)=0+6=6
A21=-\(\begin{vmatrix}-1&2\\0&1\end{vmatrix}\)=-(-1-0)=1
A22=\(\begin{vmatrix}1&2\\-2&1\end{vmatrix}\)=1+4=5
A23=-\(\begin{vmatrix}1&-1\\-2&0\end{vmatrix}\)=-(0-2)=2
A31=\(\begin{vmatrix}-1&2\\3&5\end{vmatrix}\)=-5-6=-11
A32=-\(\begin{vmatrix}1&2\\2&5\end{vmatrix}\)=-(5-4)=-1
A33=\(\begin{vmatrix}1&-1\\2&3\end{vmatrix}\)=3+2=5
Hence adj A=\(\begin{bmatrix}A_{11}&A_{21}&A_{31}\\A_{12}&A_{22}&A_{23}\\A_{13}&A_{23}&A_{33}\end{bmatrix}\)=\(\begin{bmatrix}3&1&-11\\ -12&5&-1\\ 6&2&5\end{bmatrix}\)
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______