Find adjoint of each of the matrices \(\begin{bmatrix}1&-1&2\\2&3&5\\-2&0&1\end{bmatrix}\)
Let A=\(\begin{bmatrix}1&-1&2\\2&3&5\\-2&0&1\end{bmatrix}\)
we have
A11=\(\begin{vmatrix}3&5\\0&1\end{vmatrix}\)=3-0=3
A12=-\(\begin{vmatrix}2&5\\-2&1\end{vmatrix}\)=-12
A13=\(\begin{vmatrix}2&3\\-2&0\end{vmatrix}\)=0+6=6
A21=-\(\begin{vmatrix}-1&2\\0&1\end{vmatrix}\)=-(-1-0)=1
A22=\(\begin{vmatrix}1&2\\-2&1\end{vmatrix}\)=1+4=5
A23=-\(\begin{vmatrix}1&-1\\-2&0\end{vmatrix}\)=-(0-2)=2
A31=\(\begin{vmatrix}-1&2\\3&5\end{vmatrix}\)=-5-6=-11
A32=-\(\begin{vmatrix}1&2\\2&5\end{vmatrix}\)=-(5-4)=-1
A33=\(\begin{vmatrix}1&-1\\2&3\end{vmatrix}\)=3+2=5
Hence adj A=\(\begin{bmatrix}A_{11}&A_{21}&A_{31}\\A_{12}&A_{22}&A_{23}\\A_{13}&A_{23}&A_{33}\end{bmatrix}\)=\(\begin{bmatrix}3&1&-11\\ -12&5&-1\\ 6&2&5\end{bmatrix}\)
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).