Find a vector of magnitude 5units, and parallel to the resultant of the vectors \(\vec{a}=2\hat{i}+3\hat{j}-\hat{k}\space and\space \vec{b}=\hat{i}-2\hat{j}+\hat{k}.\)
We have,
\(\vec{a}=2\hat{i}+3\hat{j}-\hat{k}\space and\space \vec{b}=\hat{i}-2\hat{j}+\hat{k}.\)
Let \(\vec{c}\) be the resultant of a→and b→.
Then,
\(\vec{c}=\vec{a}+\vec{b}=(2+1)\hat{i}+(3-2)\hat{j}+(-1+1)\hat{k}=3\hat{i}+\hat{j}\)
\(∴|\vec{c}|=\sqrt{3^{2}+1^{2}}\sqrt{9+1}=\sqrt{10}\)
\(∴\hat{c}=\frac{\vec{c}}{|\vec{c}|}=\frac{(3\hat{i}+\hat{j})}{\sqrt{10}}\)
Hence,the vector of magnitude 5units and parallel to the resultant of vectors \(\vec{a}\) and \(\vec{b}\) is \(\pm5.\hat{c}=\)\(\pm5.\frac{1}{\sqrt{10}}(3\hat{i}+\hat{j})\)\(=\pm\frac{3\sqrt{10}\hat{i}}{2}\pm\frac{\sqrt{10}}{2}\hat{j}.\)
Commodities | 2009-10 | 2010-11 | 2015-16 | 2016-17 |
---|---|---|---|---|
Agriculture and allied products | 10.0 | 9.9 | 12.6 | 12.3 |
Ore and minerals | 4.9 | 4.0 | 1.6 | 1.9 |
Manufactured goods | 67.4 | 68.0 | 72.9 | 73.6 |
Crude and petroleum products | 16.2 | 16.8 | 11.9 | 11.7 |
Other commodities | 1.5 | 1.2 | 1.1 | 0.5 |
Categories of Reporting Area | As a percentage of total cultivable land (1950-51) | As a percentage of total cultivable land (2014-15) | Area (1950-51) | Area (2014-15) |
---|---|---|---|---|
Culturable waste land | 8.0 | 4.0 | 13.4 | 6.8 |
Fallow other than current fallow | 6.1 | 3.6 | 10.2 | 6.2 |
Current fallow | 3.7 | 4.9 | 6.2 | 8.4 |
Net area sown | 41.7 | 45.5 | 70.0 | 78.4 |
Total Cultivable Land | 59.5 | 58.0 | 100.00 | 100.00 |