Question:

Find 02(x2+1)dx as the limit of a sum :

Updated On: May 7, 2024
  • (A) 43
  • (B) 143
  • (C) 145
  • (D) None of these
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Explanation:
We know that:abf(x)dx=(ba)limn1n(f(a)+f(a+h)++f(a+(n1)h))Putting a=0, b=2, h=ban=20n=2nin 02x2+1dxI=(20)limn1n(f(0)+f(n)+f(2n)++fn1)hf(0)=1f(h)=h2+1=(4n2)+1f((n1)h)=(n1)2×4n2+1I=2limn1n((1+1+n times )+(0+4n2+16n2++(n1)2n2))=2limn1n(n+4n(n1)n(2n1)6)=2limn(1+23(11n)(21n))=2×(1+43)=143Hence, the correct option is (C).
Was this answer helpful?
0
0