a | d | n | \(a_n\) | |
(i) | 7 | 3 | 8 | …. |
(iI) | -18 | … | 10 | 0 |
(iii) | … | -3 | 18 | -5 |
(iv) | -18.9 | 2.5 | … | 3.6 |
(v) | 3.5 | 0 | 105 | … |
(i) a = 7, d = 3, n = 8, \(a_n\) = ?
We know that,
For an A.P. \(a_n\) = a + (n − 1) d
= 7 + (8 − 1) \(^3\)
= 7 + (7) \(^3\)
= 7 + 2
= 28
Hence, \(a_n\)= 28
(ii) Given that a = −18, n = 10, \(a_n\)= 0, d = ?
We know that,
\(a_n\) = a + (n − 1) d
0 = − 18 + (10 − 1) d
18 = 9d
d = \(\frac{18}{9}\)= 2
Hence, common difference, d = 2
(iii) Given that d = −3, n = 18, an = −5
We know that,
\(a_n\) = a + (n − 1) d
−5 = a + (18 − 1) (−3)
−5 = a + (17) (−3)
−5 = a − 51
a = 51 − 5 = 46
Hence, a = 46
(iv) a = −18.9, d = 2.5, an = 3.6, n = ?
We know that,
\(a_n\) = a + (n − 1) d
3.6 = − 18.9 + (n − 1) 2.5
3.6 + 18.9 = (n − 1) 2.5
22.5 = (n − 1) 2.5
(n-1) = \(\frac{22.5}{2.5}\)
n-1 = 9
n = 10
Hence, n = 10
(v) a = 3.5, d = 0, n = 105, \(a_n\) = ?
We know that,
\(a_n\) = a + (n − 1) d
\(a_n\) = 3.5 + (105 − 1) 0
\(a_n\) = 3.5 + 104 × 0
\(a_n\) = 3.5
Hence, \(a_n\) = 3.5