(i) \((y^2+ 7y + 10) = y^2+ 2y + 5y + 10\)
= \(y (y + 2) + 5 (y + 2)\)
= \((y + 2) (y + 5)\)
\(\Rightarrow\frac{(y2+7y+10)}{(y+5)}=\frac{(y+5)(y+2)}{(y+5)}=y+2\)
(ii) \(m^2 - 14m - 32 = m^2 + 2m - 16m - 32\)
= \(m (m + 2) - 16 (m + 2) \)
= \((m + 2) (m - 16)\)
\(\Rightarrow\frac{(m^2-14m-32)}{(m+2)}=\frac{(m+2)(m-16)}{(m+2)}=m-16\)
(iii) \(5p^ 2 - 25p + 20 = 5(p ^2 - 5p + 4)\)
= \(5[p^ 2 - p - 4p + 4]\)
= \(5[p(p - 1) - 4(p - 1)]\)
= \(5(p - 1) (p - 4)\)
\(\Rightarrow\frac{(5p^2-25p+20)}{(p-1)}=\frac{5(p-1)(p-4)}{(p-1)}=5(p-4)\)
(iv) \(4yz(z^ 2 + 6z - 16) = 4yz [z ^2 - 2z + 8z - 16]\)
= \(4yz [z(z - 2) + 8(z - 2)]\)
= \(4yz(z - 2) (z + 8)\)
\(\frac{4yz(z^2+6z-16)}{2y(z+8)}=\frac{4yz(z-2)(z+8)}{2y(z+8)}=2z(z-2)\)
(v) \(5pq(p^ 2 - q^ 2 ) = 5pq (p - q) (p + q)\)
\(\frac{5pq(p^2-q^2)}{2p(p+q)}=\frac{5pq(p-q)(p+q)}{2p(p+q)}=\frac{5}{2q(p-q)}\)
(vi) \(12xy(9x ^2 - 16y^ 2 ) = 12xy[(3x)^ 2 - (4y)^ 2 ] = 12xy(3x - 4y) (3x + 4y)\)
\(\frac{12xy(9x^2-16y^2)}{4xy(3x+4y)}\)
=\(\frac{2 ×2×3×x×y×(3x-4y)×(3x+4y)}{2×2×x×y×(3x+4y)}\)
= \(3(3x-4y)\)
(vii) \(39y^ 3 (50y^ 2 - 98)\)
= \(3 × 13 × y × y × y × 2[(25y ^2 - 49)]\)
= \(3 × 13 × 2 × y × y × y × [(5y) ^2 - (7)^2 ]\)
= \(3 × 13 × 2 × y × y × y (5y - 7) (5y + 7)\)
\(\Rightarrow26y^ 2 (5y + 7) = 2 × 13 × y × y × (5y + 7)\)
\(\Rightarrow\frac{39y^ 3 (50y^ 2 - 98)}{26y 2 (5y + 7)}\)
= \(\frac{39y^3× 2(25y^2-49)}{26y^2(5y+7)}\)
= \(\frac{3y(5y+7)(5y-7)}{(5y+7)}\)
= \(3y(5y-7)\)