(i) (y2+7y+10)=y2+2y+5y+10
= y(y+2)+5(y+2)
= (y+2)(y+5)
⇒(y+5)(y2+7y+10)=(y+5)(y+5)(y+2)=y+2
(ii) m2−14m−32=m2+2m−16m−32
= m(m+2)−16(m+2)
= (m+2)(m−16)
⇒(m+2)(m2−14m−32)=(m+2)(m+2)(m−16)=m−16
(iii) 5p2−25p+20=5(p2−5p+4)
= 5[p2−p−4p+4]
= 5[p(p−1)−4(p−1)]
= 5(p−1)(p−4)
⇒(p−1)(5p2−25p+20)=(p−1)5(p−1)(p−4)=5(p−4)
(iv) 4yz(z2+6z−16)=4yz[z2−2z+8z−16]
= 4yz[z(z−2)+8(z−2)]
= 4yz(z−2)(z+8)
2y(z+8)4yz(z2+6z−16)=2y(z+8)4yz(z−2)(z+8)=2z(z−2)
(v) 5pq(p2−q2)=5pq(p−q)(p+q)
2p(p+q)5pq(p2−q2)=2p(p+q)5pq(p−q)(p+q)=2q(p−q)5
(vi) 12xy(9x2−16y2)=12xy[(3x)2−(4y)2]=12xy(3x−4y)(3x+4y)
4xy(3x+4y)12xy(9x2−16y2)
=2×2×x×y×(3x+4y)2 ×2×3×x×y×(3x−4y)×(3x+4y)
= 3(3x−4y)
(vii) 39y3(50y2−98)
= 3×13×y×y×y×2[(25y2−49)]
= 3×13×2×y×y×y×[(5y)2−(7)2]
= 3×13×2×y×y×y(5y−7)(5y+7)
⇒26y2(5y+7)=2×13×y×y×(5y+7)
⇒26y2(5y+7)39y3(50y2−98)
= 26y2(5y+7)39y3×2(25y2−49)
= (5y+7)3y(5y+7)(5y−7)
= 3y(5y−7)