Question:

Work out the following divisions. 
  1. \((10x – 25) ÷ 5\) 
  2.  \((10x – 25) ÷ (2x – 5) \)
  3.  \(10y(6y + 21) ÷ 5(2y + 7) \)
  4.  \(9x^ 2 y^ 2 (3z – 24) ÷ 27xy(z – 8) \)
  5. \( 96abc(3a – 12) (5b – 30) ÷ 144(a – 4) (b – 6)\)

Updated On: Dec 4, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(i) \(\frac{(10x-25)}{5} = \frac{2 ×5×x-5×5}{5}\)

=\(\frac{ 5(2x-5)}{5}\)

\(2x-5\)


(ii) \(\frac{(10x-25)}{(2x-5)} = \frac{2×5×x-5×5}{(2x-5)}\)

=\(\frac{5(2x-5)}{2x-5}\)

=\(5\)


(iii) \(\frac{10y(6y+21)}{5(2y+7)}=\frac{2×5×y[2×3×y+3×7]}{5(2y+7)}\)

=\(\frac{2×5×y×3(2y+7)}{5(2y+7)}=6y\)


(iv) \(\frac{9x^2y^2(3z-24)}{27xy(z-8)}=\frac{9x^2y^2[3×z-2×2×2×3]}{27xy(z-8)}\)

\(\frac{xy×3(z-8)}{3(z-8)}=xy\)


(v) \(\frac{96 abc(3a - 12) (5b - 30) }{ 144 (a - 4) (b - 6) }\)

\(\frac{96abc(3×a-3×4)(5×b-2×3×5)}{144(a-4)(b-6)}\)

=\(\frac{2abc×3(a-4)×5(b-6)}{3(a-4)(b-6)}=10abc\)

Was this answer helpful?
0
0

Top Questions on Division of Algebraic Expressions Continued (Polynomial ÷ Polynomial)