(i) \(\frac{(10x-25)}{5} = \frac{2 ×5×x-5×5}{5}\)
=\(\frac{ 5(2x-5)}{5}\)
= \(2x-5\)
(ii) \(\frac{(10x-25)}{(2x-5)} = \frac{2×5×x-5×5}{(2x-5)}\)
=\(\frac{5(2x-5)}{2x-5}\)
=\(5\)
(iii) \(\frac{10y(6y+21)}{5(2y+7)}=\frac{2×5×y[2×3×y+3×7]}{5(2y+7)}\)
=\(\frac{2×5×y×3(2y+7)}{5(2y+7)}=6y\)
(iv) \(\frac{9x^2y^2(3z-24)}{27xy(z-8)}=\frac{9x^2y^2[3×z-2×2×2×3]}{27xy(z-8)}\)
= \(\frac{xy×3(z-8)}{3(z-8)}=xy\)
(v) \(\frac{96 abc(3a - 12) (5b - 30) }{ 144 (a - 4) (b - 6) }\)
= \(\frac{96abc(3×a-3×4)(5×b-2×3×5)}{144(a-4)(b-6)}\)
=\(\frac{2abc×3(a-4)×5(b-6)}{3(a-4)(b-6)}=10abc\)