Study the given below single strand of deoxyribonucleic acid depicted in the form of a “stick” diagram with 5′ – 3′ end directionality, sugars as vertical lines and bases as single letter abbreviations and answer the questions that follow.
Name the covalent bonds depicted as (a) and (b) in the form of slanting lines in the diagram.
How many purines are present in the given “stick” diagram?
Draw the chemical structure of the given polynucleotide chain of DNA.
Study the given molecular structure of double-stranded polynucleotide chain of DNA and answer the questions that follow. 
(a) How many phosphodiester bonds are present in the given double-stranded polynucleotide chain?
(b) How many base pairs are there in each helical turn of double helix structure of DNA? Also write the distance between a base pair in a helix.
(c) In addition to H-bonds, what confers additional stability to the helical structure of DNA?
Use the given information to select the amino acid attached to the 3′ end of tRNA during the process of translation, if the coding strand of the structural gene being transcribed has the nucleotide sequence TAC.

Student to attempt either option-(A) or (B):
(A) Write the features a molecule should have to act as a genetic material. In the light of the above features, evaluate and justify the suitability of the molecule that is preferred as an ideal genetic material.
OR
(B) Differentiate between the following:
The output (Y) of the given logic implementation is similar to the output of an/a …………. gate.
Evolution is a process that occurs in changes in the genetic content of a population over time. Evolutionary change is generally classified into two: microevolution and macroevolution. The process of changes in allele frequencies in a population over time is a microevolutionary process. Three main mechanisms that cause allele frequency change are natural selection, genetic drift, and gene flow. On the other hand, macroevolution refers to change at or above the level of the species.