Step 1: Simplify the expression inside \( \tan^-1 \)
The given expression is:
\[
\tan^-1 \left( \frac\cos x1 - \sin x \right).
\]
Using trigonometric identities, rewrite:
\[
1 - \sin x = (\cos^2\fracx2 + \sin^2\fracx2) - 2\sin\fracx2\cos\fracx2 = (\cos\fracx2 - \sin\fracx2)^2.
\]
Step 2: Transform into a single tangent function
Substituting \( 1 - \sin x \) and \( \cos x = (\cos^2\fracx2 - \sin^2\fracx2) \):
\[
\tan^-1 \left( \frac\cos x1 - \sin x \right)
= \tan^-1 \left[ \tan\left(\frac\pi4 + \fracx2\right) \right].
\]
Step 3: Simplify using \( \tan^-1 \tan y = y \)
Since \( -\frac\pi2<x<\frac\pi2 \), we simplify:
\[
\tan^-1 \left[ \tan\left(\frac\pi4 + \fracx2\right) \right] = \frac\pi4 + \fracx2.
\]
Conclusion: The simplest form is \( \frac\pi4 + \fracx2 \).