Given:
We want to find \(P(E_1|A)\). We can use Bayes' theorem:
\(P(E_1|A) = \frac{P(A|E_1) \cdot P(E_1)}{P(A)}\)
We know \(P(E_1) = \frac{1}{2}\). We need to find \(P(A|E_1)\) and \(P(A)\).
Since \(E_1\) and \(E_2\) form a partition:
\(P(A) = P(A \cap E_1) + P(A \cap E_2)\)
\(P(A) = P(A|E_1)P(E_1) + P(A|E_2)P(E_2)\)
We know \(P(A|E_2) = \frac{2}{3}\) and \(P(E_2) = \frac{1}{2}\), so:
\(P(A \cap E_2) = (\frac{2}{3})(\frac{1}{2}) = \frac{1}{3}\)
Also, we are given \(P(E_2|A) = \frac{1}{2}\). Using the definition of conditional probability:
\(P(E_2|A) = \frac{P(E_2 \cap A)}{P(A)}\)
\(\frac{1}{2} = \frac{\frac{1}{3}}{P(A)}\)
\(P(A) = \frac{2}{3}\)
Now we have:
\(P(A) = P(A|E_1)P(E_1) + P(A|E_2)P(E_2)\)
\(\frac{2}{3} = P(A|E_1)(\frac{1}{2}) + (\frac{2}{3})(\frac{1}{2})\)
\(\frac{2}{3} = P(A|E_1)(\frac{1}{2}) + \frac{1}{3}\)
\(P(A|E_1)(\frac{1}{2}) = \frac{1}{3}\)
\(P(A|E_1) = \frac{2}{3}\)
Finally, we can calculate \(P(E_1|A)\):
\(P(E_1|A) = \frac{P(A|E_1) \cdot P(E_1)}{P(A)}\)
\(P(E_1|A) = \frac{(\frac{2}{3}) \cdot (\frac{1}{2})}{\frac{2}{3}}\)
\(P(E_1|A) = \frac{\frac{1}{3}}{\frac{2}{3}}\)
\(P(E_1|A) = \frac{1}{2}\)