The trapezoidal rule for integral approximation over \([a, b]\) using \(n = 2\) segments is given by:
\[
\int_{a}^{b} f(x)\, dx \approx \frac{h}{2} \left[ f(x_0) + 2f(x_1) + f(x_2) \right]
\]
where:
\[
h = \frac{b - a}{n} = \frac{4 - 2}{2} = 1
\]
\[
x_0 = 2, x_1 = 3, x_2 = 4
\]
\[
f(x) = x^2 ⇒ f(2) = 4, f(3) = 9, f(4) = 16
\]
\[
⇒ \int_{2}^{4} x^2 dx \approx \frac{1}{2} \left[ 4 + 2 \times 9 + 16 \right] = \frac{1}{2}(4 + 18 + 16) = \frac{38}{2} = 19.0
\]