Step 1: Use Taylor series expansion for \( \sin x \).
The Taylor series expansion of \( \sin x \) around \( x = 0 \) is given by: \[ \sin x = x - \frac{x^3}{6} + O(x^5) \] So, \[ x - \sin x = x - \left( x - \frac{x^3}{6} + O(x^5) \right) = \frac{x^3}{6} + O(x^5) \]
Step 2: Substitute into the limit expression.
Substitute the result of \( x - \sin x \) into the original limit expression: \[ \lim_{x \to 0} \left( x - \sin x \right) \left( \frac{1}{x} \right) = \lim_{x \to 0} \left( \frac{x^3}{6} \cdot \frac{1}{x} \right) \] \[ = \lim_{x \to 0} \frac{x^2}{6} \]
Step 3: Evaluate the limit. As \( x \to 0 \), \( \frac{x^2}{6} \to 0 \).
Final Answer: The value of the limit is 0.
Let \( f: \mathbb{R} \to \mathbb{R} \) \(\text{ be any function defined as }\) \[ f(x) = \begin{cases} x^\alpha \sin \left( \frac{1}{x^\beta} \right) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0, \end{cases} \] where \( \alpha, \beta \in \mathbb{R} \). Which of the following is true? \( \mathbb{R} \) denotes the set of all real numbers.