Step 1: Use Taylor series expansion for \( \sin x \).
The Taylor series expansion of \( \sin x \) around \( x = 0 \) is given by: \[ \sin x = x - \frac{x^3}{6} + O(x^5) \] So, \[ x - \sin x = x - \left( x - \frac{x^3}{6} + O(x^5) \right) = \frac{x^3}{6} + O(x^5) \]
Step 2: Substitute into the limit expression.
Substitute the result of \( x - \sin x \) into the original limit expression: \[ \lim_{x \to 0} \left( x - \sin x \right) \left( \frac{1}{x} \right) = \lim_{x \to 0} \left( \frac{x^3}{6} \cdot \frac{1}{x} \right) \] \[ = \lim_{x \to 0} \frac{x^2}{6} \]
Step 3: Evaluate the limit. As \( x \to 0 \), \( \frac{x^2}{6} \to 0 \).
Final Answer: The value of the limit is 0.
Let \( f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) be defined as:
\[ f(x, y) = \begin{cases} \frac{x}{\sqrt{x^2 + y^2}} & \text{if } (x, y) \neq (0, 0) \\ 1 & \text{if } (x, y) = (0, 0) \end{cases} \] Then, which of the following statements is true?