We are given the line integral:
\[
I = \int_C \left( 2xy^2 \, dx + 2x^2 y \, dy - \frac{1}{3} z \, dz \right)
\]
The path joining the origin $(0,0,0)$ to the point $(1,1,1)$ is a straight line, so we parametrize the path using:
\[
x = t, y = t, z = t \text{for} t \in [0,1]
\]
Thus, $dx = dt$, $dy = dt$, and $dz = dt$.
Now, substitute these into the line integral:
\[
I = \int_0^1 \left( 2t \cdot t^2 \, dt + 2t^2 \cdot t \, dt - \frac{1}{3} \cdot t \, dt \right)
\]
Simplifying the terms inside the integral:
\[
I = \int_0^1 \left( 2t^3 \, dt + 2t^3 \, dt - \frac{1}{3} t \, dt \right)
\]
\[
I = \int_0^1 \left( 4t^3 - \frac{1}{3} t \right) dt
\]
Now, integrate each term:
\[
I = \left[ \frac{4t^4}{4} - \frac{1}{3} \cdot \frac{t^2}{2} \right]_0^1
\]
\[
I = \left[ t^4 - \frac{t^2}{6} \right]_0^1
\]
Substituting the limits:
\[
I = \left[ 1^4 - \frac{1^2}{6} \right] - \left[ 0^4 - \frac{0^2}{6} \right]
\]
\[
I = 1 - \frac{1}{6} = \frac{5}{6}
\]
Thus, the value of the line integral is $\frac{5}{6}$.