>
Exams
>
Quantitative Aptitude
>
Limits
>
evaluate the limit lim x to 0 frac sqrt 3 8 x 2 x
Question:
Evaluate the limit: \[ \lim_{x \to 0} \frac{\sqrt[3]{8 + x} - 2}{x}. \]
Show Hint
For cube roots, use the binomial expansion for small values of \( x \) to simplify the limit expression.
AP ICET - 2024
AP ICET
Updated On:
Apr 27, 2025
\( \frac{1}{2} \)
\( \frac{1}{3} \)
\( \frac{1}{4} \)
\( \frac{1}{12} \)
Hide Solution
Verified By Collegedunia
The Correct Option is
D
Solution and Explanation
We are given: \[ L = \lim_{x \to 0} \frac{\sqrt[3]{8 + x} - 2}{x}. \] We apply the binomial expansion for small \( x \): \[ \sqrt[3]{8 + x} \approx 2 + \frac{x}{12} \text{ for small } x. \] Thus, the given expression becomes: \[ \lim_{x \to 0} \frac{\left(2 + \frac{x}{12}\right) - 2}{x} = \lim_{x \to 0} \frac{\frac{x}{12}}{x} = \frac{1}{12}. \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Limits
Let \(f: R \to (0, \infty)\) be a twice differentiable function such that \(f(3) = 18\), \(f'(3)=0\) and \(f''(3) = 4\). Then \(\lim_{x \to 1} \log_e \left[ \frac{f(2+x)}{f(3)} \right]^{\frac{18}{(x-1)^2}}\) is equal to:
JEE Main - 2026
Mathematics
Limits
View Solution
Let \( f(x) = \int \frac{(2 - x^2) \cdot e^x{(\sqrt{1 + x})(1 - x)^{3/2}} dx \). If \( f(0) = 0 \), then \( f\left(\frac{1}{2}\right) \) is equal to :}
JEE Main - 2026
Mathematics
Limits
View Solution
The value of \[ \lim_{x\to 0}\frac{\log_e\!\big(\sec(ex)\cdot \sec(e^2x)\cdots \sec(e^{10}x)\big)} {e^2-e^{2\cos x}} \] is equal to:
JEE Main - 2026
Mathematics
Limits
View Solution
If the function \[ f(x)=\frac{e^x\left(e^{\tan x - x}-1\right)+\log_e(\sec x+\tan x)-x}{\tan x-x} \] is continuous at $x=0$, then the value of $f(0)$ is equal to
JEE Main - 2026
Mathematics
Limits
View Solution
If \[ \lim_{x\to 0} \frac{e^{(a-1)x}+2\cos bx+(c-2)e^{-x}} {x\cos x-\log_e(1+x)} =2, \] then \(a^2+b^2+c^2\) is equal to
JEE Main - 2026
Mathematics
Limits
View Solution
View More Questions
Questions Asked in AP ICET exam
BEHK : 25811 :: ADGJ : _____
AP ICET - 2024
Pattern Recognition
View Solution
BGH : FKL :: DFK : _____
AP ICET - 2024
Pattern Recognition
View Solution
256 : 127 :: 378 : ____
AP ICET - 2024
Pattern Recognition
View Solution
If 'ACID' = 1C3D, 'PAMPER' = P1MP2R, 'BOMBAY' = B4MB1Y, then 'UNIVERSITY' = ..................................?
AP ICET - 2024
Coding Decoding
View Solution
Find the odd thing from the following:
AP ICET - 2024
Odd one Out
View Solution
View More Questions