Question:

Evaluate the limit: \[ \lim_{x \to 0} \frac{\sqrt[3]{8 + x} - 2}{x}. \]

Show Hint

For cube roots, use the binomial expansion for small values of \( x \) to simplify the limit expression.
Updated On: Apr 27, 2025
  • \( \frac{1}{2} \)
  • \( \frac{1}{3} \)
  • \( \frac{1}{4} \)
  • \( \frac{1}{12} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We are given: \[ L = \lim_{x \to 0} \frac{\sqrt[3]{8 + x} - 2}{x}. \] We apply the binomial expansion for small \( x \): \[ \sqrt[3]{8 + x} \approx 2 + \frac{x}{12} \text{ for small } x. \] Thus, the given expression becomes: \[ \lim_{x \to 0} \frac{\left(2 + \frac{x}{12}\right) - 2}{x} = \lim_{x \to 0} \frac{\frac{x}{12}}{x} = \frac{1}{12}. \]
Was this answer helpful?
0
0