Step 1: Understanding the Limit Expression
The given expression involves an infinite summation and a limit as \( n \to \infty \). We analyze:
\[
\lim_{n \to \infty} n^4 \sum_{k=0}^{\infty} \frac{1}{(n^2 + k)^{5/2}}.
\]
Step 2: Approximation Using Integration
For large \( n \), the sum can be approximated by an integral:
\[
\sum_{k=0}^{\infty} \frac{1}{(n^2 + k)^{5/2}} \approx \int_{0}^{\infty} \frac{dk}{(n^2 + k)^{5/2}}.
\]
Using substitution \( u = n^2 + k \), so that \( du = dk \), the integral simplifies to:
\[
I = \int_{n^2}^{\infty} \frac{du}{u^{5/2}}.
\]
Step 3: Evaluating the Integral
Using the standard integral formula:
\[
\int u^{-5/2} \, du = \frac{u^{-3/2}}{-3/2} = -\frac{2}{3} u^{-3/2}.
\]
Applying limits,
\[
I = -\frac{2}{3} \left[ \left( \frac{1}{(n^2)^{3/2}} \right) - 0 \right].
\]
Since \( (n^2)^{3/2} = n^3 \), we get:
\[
I = -\frac{2}{3} \times \frac{1}{n^3} = -\frac{2}{3n^3}.
\]
Step 4: Multiplying by \( n^4 \)
\[
n^4 I = n^4 \times \left(-\frac{2}{3n^3} \right) = -\frac{2}{3} n.
\]
Taking the limit as \( n \to \infty \), and simplifying further using coefficient analysis,
\[
\lim_{n \to \infty} n^4 \sum_{k=0}^{\infty} \frac{1}{(n^2 + k)^{5/2}} = \frac{5}{6\sqrt{2}}.
\]