We observe the expression inside the limit is a Riemann sum:
\[
\sum_{r=1}^{n} \frac{r}{r^2 + n^2}
\]
Divide numerator and denominator by \(n^2\):
\[
= \sum_{r=1}^{n} \frac{r/n}{(r/n)^2 + 1} \cdot \frac{1}{n}
\]
This is a Riemann sum approximation for the integral:
\[
\int_0^1 \frac{x}{x^2 + 1} dx
\]
To solve:
Let \( I = \int_0^1 \frac{x}{x^2 + 1} dx \)
Use substitution: Let \( u = x^2 + 1 \Rightarrow du = 2x dx \)
Then:
\[
I = \frac{1}{2} \int_{x=0}^{1} \frac{2x}{x^2 + 1} dx = \frac{1}{2} \int_{u=1}^{2} \frac{1}{u} du = \frac{1}{2} \ln u \Big|_{1}^{2} = \frac{1}{2} \log 2
\]
Hence, the limit evaluates to:
\[
\boxed{\dfrac{1}{2} \log 2}
\]