Step 1: Use the Cosine Difference Formula
Using the standard trigonometric identity:
\[
\cos A - \cos B = -2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right),
\]
we apply this to both numerator and denominator:
For the numerator:
\[
\cos 2x - \cos 3x = -2 \sin \left(\frac{2x + 3x}{2} \right) \sin \left(\frac{2x - 3x}{2} \right).
\]
\[
= -2 \sin \left(\frac{5x}{2} \right) \sin \left(\frac{-x}{2} \right).
\]
For the denominator:
\[
\cos 4x - \cos 5x = -2 \sin \left(\frac{4x + 5x}{2} \right) \sin \left(\frac{4x - 5x}{2} \right).
\]
\[
= -2 \sin \left(\frac{9x}{2} \right) \sin \left(\frac{-x}{2} \right).
\]
Step 2: Apply the Limit
Canceling common terms:
\[
\lim\limits_{x \to 0} \frac{\sin \left(\frac{5x}{2} \right)}{\sin \left(\frac{9x}{2} \right)}.
\]
Using the small-angle approximation \( \sin y \approx y \) as \( y \to 0 \):
\[
\frac{\frac{5x}{2}}{\frac{9x}{2}} = \frac{5}{9}.
\]
Step 3: Conclusion
Thus, the correct answer is:
\[
\mathbf{\frac{5}{9}}.
\]