Let:
\[
I = \int \sqrt{\cos x} \cdot \sin x \, dx = \int (\cos x)^{1/2} \sin x \, dx
\]
Use substitution:
\[
t = \cos x \implies dt = -\sin x \, dx \implies -dt = \sin x \, dx
\]
So,
\[
I = \int t^{1/2} (-dt) = -\int t^{1/2} dt = -\frac{2}{3} t^{3/2} + c = -\frac{2}{3} (\cos x)^{3/2} + c
\]