Question:

Evaluate the integral: \[ \int \sqrt{\cos x} \cdot \sin x \, dx = ? \]

Show Hint

When integrating products like \( \sqrt{\cos x} \sin x \), substitution \( t = \cos x \) simplifies the integral.
  • \( \frac{2}{3} (\cos x)^{3/2} + c \)
  • \( -\frac{2}{3} (\cos x)^{3/2} + c \)
  • \( (\cos x)^{3/2} + c \)
  • \( -(\cos x)^{3/2} + c \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Let: \[ I = \int \sqrt{\cos x} \cdot \sin x \, dx = \int (\cos x)^{1/2} \sin x \, dx \] Use substitution: \[ t = \cos x \implies dt = -\sin x \, dx \implies -dt = \sin x \, dx \] So, \[ I = \int t^{1/2} (-dt) = -\int t^{1/2} dt = -\frac{2}{3} t^{3/2} + c = -\frac{2}{3} (\cos x)^{3/2} + c \]
Was this answer helpful?
0
0