Use the identity:
\[
1 + \cos 2x = 2 \cos^2 x
\]
So:
\[
\int \sqrt{1 + \cos 2x} \, dx = \int \sqrt{2 \cos^2 x} \, dx = \int \sqrt{2} |\cos x| \, dx
\]
Assuming \( \cos x \geq 0 \) in the interval of integration, we get:
\[
= \sqrt{2} \int \cos x \, dx = \sqrt{2} \sin x + c
\]