Step 1: Expressing in Terms of Double Angles
We use the double angle identity:
\[
\sin^2 x \cos^2 x = \frac{1}{4} \sin^2 2x.
\]
Rewriting the given integral:
\[
I = \int \sin^4 x \cos^4 x \, dx = \int \left(\frac{1}{4} \sin^2 2x \right)^2 dx.
\]
Step 2: Substituting and Expanding
Expanding:
\[
I = \frac{1}{16} \int \sin^4 2x \, dx.
\]
Using the identity:
\[
\sin^4 2x = \frac{3}{8} - \frac{1}{2} \cos 4x + \frac{1}{8} \cos 8x.
\]
Substituting:
\[
I = \frac{1}{16} \int \left(\frac{3}{8} - \frac{1}{2} \cos 4x + \frac{1}{8} \cos 8x \right) dx.
\]
Step 3: Integrating Term by Term
\[
I = \frac{1}{16} \left[ \frac{3}{8} x - \frac{1}{8} \sin 4x + \frac{1}{64} \sin 8x \right] + c.
\]
Simplifying:
\[
I = \frac{1}{256} (-2 \sin^3 2x \cos 2x - 3 \sin 2x \cos 2x + 6x) + c.
\]
Step 4: Conclusion
Thus, the correct answer is:
\[
\mathbf{\frac{1}{256} (-2 \sin^3 2x \cos 2x - 3 \sin 2x \cos 2x + 6x) + c}.
\]