Factorizing the denominator:
\[
x^3 - 1 = (x - 1)(x^2 + x + 1)
\]
Rewriting the fraction:
\[
\frac{x+1}{(x-1)(x^2 + x + 1)}
\]
Using partial fractions:
\[
\frac{x+1}{(x-1)(x^2 + x + 1)} = \frac{A}{x-1} + \frac{Bx + C}{x^2 + x + 1}
\]
Solving for coefficients \( A, B, C \), simplifying, and integrating:
\[
\int \frac{x+1}{x^3 - 1} dx = \frac{1}{3} \log \frac{x-1}{x^2 + x + 1} + C
\]
Thus, the correct answer is:
\[
\frac{1}{3} \log \frac{x-1}{x^2 + x + 1} + C
\]