Step 1: Use Weierstrass substitution
Let \( t = \tan \frac{x}{2} \), then:
\[
\cos x = \frac{1 - t^2}{1 + t^2}, \quad dx = \frac{2}{1 + t^2} dt
\]
Step 2: Rewrite the integral in terms of \( t \)
\[
\int \frac{dx}{4 + 5 \cos x} = \int \frac{\frac{2}{1 + t^2} dt}{4 + 5 \cdot \frac{1 - t^2}{1 + t^2}} = \int \frac{2 \, dt}{(1 + t^2) \left(4 + 5 \frac{1 - t^2}{1 + t^2}\right)}
\]
Simplify denominator:
\[
4 + 5 \frac{1 - t^2}{1 + t^2} = \frac{4(1 + t^2) + 5(1 - t^2)}{1 + t^2} = \frac{4 + 4t^2 + 5 - 5 t^2}{1 + t^2} = \frac{9 - t^2}{1 + t^2}
\]
So integral becomes:
\[
\int \frac{2 dt}{(1 + t^2) \cdot \frac{9 - t^2}{1 + t^2}} = \int \frac{2 dt}{9 - t^2}
\]
Step 3: Integrate the simplified integral
\[
\int \frac{2}{9 - t^2} dt = \int \frac{2}{(3)^2 - t^2} dt
\]
This is a standard integral:
\[
\int \frac{dt}{a^2 - t^2} = \frac{1}{2a} \log \left| \frac{a + t}{a - t} \right| + C
\]
So:
\[
\int \frac{2}{9 - t^2} dt = \frac{2}{2 \cdot 3} \log \left| \frac{3 + t}{3 - t} \right| + C = \frac{1}{3} \log \left| \frac{3 + t}{3 - t} \right| + C
\]
Step 4: Substitute back \( t = \tan \frac{x}{2} \)
\[
\int \frac{dx}{4 + 5 \cos x} = \frac{1}{3} \log \left| \frac{3 + \tan \frac{x}{2}}{3 - \tan \frac{x}{2}} \right| + C
\]