For integrals involving trigonometric functions, try substituting \( t = \tan \frac{x}{2} \) to simplify the expression and use standard results for the integral.
The given integral is \( \int \frac{dx}{4 + 5 \cos x} \).
Step 1: Use the substitution \( t = \tan \frac{x}{2} \), which simplifies the trigonometric expression.
Step 2: The integral becomes:
\[
\int \frac{dx}{4 + 5 \cos x} = \frac{1}{3} \log \left| \frac{3 + \tan \frac{x}{2}}{3 - \tan \frac{x}{2}} \right| + C
\]
% Final Answer
The correct integral is \( \frac{1}{3} \log \left| \frac{3 + \tan \frac{x}{2}}{3 - \tan \frac{x}{2}} \right| + C \).
Was this answer helpful?
0
0
Hide Solution
Verified By Collegedunia
Approach Solution -2
Step 1: Use Weierstrass substitution
Let \( t = \tan \frac{x}{2} \), then:
\[
\cos x = \frac{1 - t^2}{1 + t^2}, \quad dx = \frac{2}{1 + t^2} dt
\]