Evaluate the integral: \[ \int \frac{dx}{4 + 3\cot x} \]
\( \frac{4}{25} \log |4 + 3\cot x| - \frac{3}{25} x + C \)
Step 1: Substituting Trigonometric Identities We rewrite \( 4 + 3\cot x \) using the sine and cosine functions: \[ 4 + 3\cot x = 4 + 3 \frac{\cos x}{\sin x} \] Multiplying numerator and denominator by \( \sin x \), we obtain: \[ = \frac{4\sin x + 3\cos x}{\sin x} \] Thus, the given integral becomes: \[ I = \int \frac{\sin x \, dx}{4\sin x + 3\cos x} \]
Step 2: Using Substitution Let: \[ u = 4\sin x + 3\cos x \] Differentiating both sides: \[ du = (4\cos x - 3\sin x) dx \] We rewrite the integral using substitution: \[ I = \int \frac{dx}{4 + 3\cot x} \] Using standard integral properties: \[ I = -\frac{3}{25} \log |4\sin x + 3\cos x| + \frac{4}{25} x + C \]
If \[ \int e^x (x^3 + x^2 - x + 4) \, dx = e^x f(x) + C, \] then \( f(1) \) is:
The value of : \( \int \frac{x + 1}{x(1 + xe^x)} dx \).