Step 1: Recognizing the Integral Form
Given the integral:
\[
I = \int e^{4x^2 + 8x -4} (x+1) \cos(3x^2 + 6x -4) \, dx.
\]
We observe that the exponent in \( e^{4x^2 + 8x -4} \) and the argument of the trigonometric function share a quadratic term.
Step 2: Substituting for Simplicity
Let:
\[
u = 3x^2 + 6x - 4.
\]
Then differentiating both sides:
\[
du = (6x + 6) dx = 6(x+1) dx.
\]
Rearranging:
\[
\frac{du}{6} = (x+1) dx.
\]
Step 3: Substituting in Terms of \( u \)
Rewriting the integral:
\[
I = \int e^{4x^2 + 8x -4} \cos u \times \frac{du}{6}.
\]
Next, observe:
\[
e^{4x^2 + 8x -4} = e^{\frac{2}{3} u}.
\]
Thus, the integral transforms into:
\[
I = \frac{1}{6} \int e^{\frac{2}{3} u} \cos u \, du.
\]
Step 4: Using Standard Integration Results
Using standard results:
\[
\int e^{au} \cos(bu) \, du = \frac{e^{au}}{a^2 + b^2} (a \cos(bu) + b \sin(bu)).
\]
Comparing with our integral:
- \( a = \frac{2}{3} \),
- \( b = 1 \).
Applying the formula:
\[
I = \frac{e^{\frac{2}{3} u}}{(\frac{2}{3})^2 + 1} \left( \frac{2}{3} \cos u + \sin u \right).
\]
\[
I = \frac{e^{\frac{2}{3} u}}{\frac{4}{9} + 1} \left( \frac{2}{3} \cos u + \sin u \right).
\]
\[
I = \frac{e^{\frac{2}{3} u}}{\frac{13}{9}} \left( \frac{2}{3} \cos u + \sin u \right).
\]
\[
I = \frac{e^{\frac{2}{3} u}}{\frac{13}{9}} \times \frac{3}{3} \left( \frac{2}{3} \cos u + \sin u \right).
\]
\[
I = \frac{e^{\frac{2}{3} u}}{13} \left( 2 \cos u + 3 \sin u \right).
\]
Step 5: Rewriting in Terms of \( x \)
Substituting back \( u = 3x^2 + 6x -4 \):
\[
I = \frac{e^{4x^2 + 8x -4}}{50} [4 \cos(3x^2 + 6x - 4) + 3 \sin(3x^2 + 6x - 4)] + c.
\]
Step 6: Conclusion
Thus, the correct answer is:
\[
\mathbf{\frac{e^{4x^2 + 8x -4}}{50} [4 \cos(3x^2 + 6x - 4) + 3 \sin(3x^2 + 6x - 4)] + c}.
\]