We know that \( \cot^2(x) = \csc^2(x) - 1 \) (using the trigonometric identity).
So, the integral becomes:
\[
\int \cot^2(x) \, dx = \int (\csc^2(x) - 1) \, dx
\]
Now, split the integral:
\[
= \int \csc^2(x) \, dx - \int 1 \, dx
\]
We know that:
\[
\int \csc^2(x) \, dx = -\cot(x)
\]
and
\[
\int 1 \, dx = x
\]
Therefore, the integral is:
\[
-\cot(x) - x + k
\]
Thus, the correct answer is:
\[
\boxed{-\cot(x) - x + k}
\]