Step 1: Recognizing the Integral Type
The given integral has the standard form:
\[
I = \int_{-a}^{a} (a^2 - x^2)^n \, dx.
\]
which suggests using a trigonometric substitution.
Step 2: Substituting \( x = 2\sin\theta \)
Let:
\[
x = 2\sin\theta, \quad dx = 2\cos\theta d\theta.
\]
Rewriting the integral:
\[
I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (4 - 4\sin^2\theta)^{\frac{5}{2}} \cdot 2\cos\theta \, d\theta.
\]
Using \( \cos^2\theta = 1 - \sin^2\theta \), we get:
\[
(4 - 4\sin^2\theta)^{\frac{5}{2}} = 4^{\frac{5}{2}} \cos^{5} \theta.
\]
Step 3: Evaluating the Integral
\[
I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 32 \cos^6\theta \cdot 2\cos\theta \, d\theta.
\]
\[
I = 64 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^6\theta \, d\theta.
\]
Using the reduction formula:
\[
\int_{0}^{\frac{\pi}{2}} \cos^{2n} \theta \, d\theta = \frac{\pi}{2} \frac{(2n-1)!!}{(2n)!!}.
\]
For \( n = 3 \):
\[
\int_{0}^{\frac{\pi}{2}} \cos^6\theta \, d\theta = \frac{\pi}{16} \frac{15}{16}.
\]
Multiplying by 64:
\[
I = 64 \times \frac{5\pi}{16} = 20\pi.
\]
Step 4: Conclusion
Thus, the correct answer is:
\[
\mathbf{20\pi}.
\]