Let:
\[
I = \int_{-1}^{1} \log\left(\frac{2 - x}{2 + x}\right) dx
\]
We’ll use the property of definite integrals:
\[
\int_{-a}^{a} f(x) dx =
\begin{cases}
2\int_{0}^{a} f(x) dx, & \text{if } f(x) \text{ is even}
0, & \text{if } f(x) \text{ is odd}
\end{cases}
\]
Let us test the symmetry of the function:
Define
\[
f(x) = \log\left(\frac{2 - x}{2 + x}\right)
\]
Now compute \( f(-x) \):
\[
f(-x) = \log\left(\frac{2 + x}{2 - x}\right) = -\log\left(\frac{2 - x}{2 + x}\right) = -f(x)
\]
So, \( f(x) \) is odd.
Therefore:
\[
\int_{-1}^{1} f(x) dx = 0
\]
Final Answer:
\[
\boxed{0}
\]