Step 1: Use the property of definite integrals
For any continuous function \( f(x) \),
\[
\int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx
\]
Let
\[
I = \int_0^{\pi} \frac{x \sin x}{\sin^2 x + 2\cos^2 x} \, dx
\]
Using the property:
\[
I = \int_0^{\pi} \frac{(\pi - x) \sin(\pi - x)}{\sin^2(\pi - x) + 2\cos^2(\pi - x)} \, dx
\]
Recall:
- \( \sin(\pi - x) = \sin x \)
- \( \cos(\pi - x) = -\cos x \)
- So, \( \sin^2(\pi - x) = \sin^2 x \), \( \cos^2(\pi - x) = \cos^2 x \)
Then,
\[
I = \int_0^{\pi} \frac{(\pi - x) \sin x}{\sin^2 x + 2\cos^2 x} \, dx
\]
Step 2: Add the two forms
Add both representations of \( I \):
\[
2I = \int_0^{\pi} \frac{x \sin x + (\pi - x) \sin x}{\sin^2 x + 2\cos^2 x} \, dx
= \int_0^{\pi} \frac{\pi \sin x}{\sin^2 x + 2\cos^2 x} \, dx
\]
\[
I = \frac{\pi}{2} \int_0^{\pi} \frac{\sin x}{\sin^2 x + 2\cos^2 x} \, dx
\]
Step 3: Simplify the denominator
Note:
\[
\sin^2 x + 2\cos^2 x = 1 - \cos^2 x + 2\cos^2 x = 1 + \cos^2 x
\]
So the integral becomes:
\[
I = \frac{\pi}{2} \int_0^{\pi} \frac{\sin x}{1 + \cos^2 x} \, dx
\]
Let \( u = \cos x \), then \( du = -\sin x \, dx \)
Limits change:
- When \( x = 0 \Rightarrow u = \cos 0 = 1 \)
- When \( x = \pi \Rightarrow u = \cos \pi = -1 \)
So,
\[
I = \frac{\pi}{2} \int_1^{-1} \frac{-1}{1 + u^2} \, du = \frac{\pi}{2} \int_{-1}^{1} \frac{1}{1 + u^2} \, du
\]
\[
= \frac{\pi}{2} \left[ \tan^{-1}(u) \right]_{-1}^{1} = \frac{\pi}{2} \left( \tan^{-1}(1) - \tan^{-1}(-1) \right)
= \frac{\pi}{2} \left( \frac{\pi}{4} + \frac{\pi}{4} \right)
= \frac{\pi^2}{4}
\]